Artwork

Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Toy Models of Superposition

41:43
 
Condividi
 

Manage episode 424087973 series 3498845
Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an “ideal” ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout. Empirically, in models we have studied, some of the neurons do cleanly map to features. But it isn't always the case that features correspond so cleanly to neurons, especially in large language models where it actually seems rare for neurons to correspond to clean features. This brings up many questions. Why is it that neurons sometimes align with features and sometimes don't? Why do some models and tasks have many of these clean neurons, while they're vanishingly rare in others?

In this paper, we use toy models — small ReLU networks trained on synthetic data with sparse input features — to investigate how and when models represent more features than they have dimensions. We call this phenomenon superposition . When features are sparse, superposition allows compression beyond what a linear model would do, at the cost of "interference" that requires nonlinear filtering.

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Capitoli

1. Toy Models of Superposition (00:00:00)

2. Definitions and Motivation: Features, Directions, and Superposition (00:00:11)

3. Empirical Phenomena (00:03:59)

4. What are Features? (00:06:08)

5. Features as Directions (00:09:20)

6. Privileged vs Non-privileged Bases (00:13:06)

7. The Superposition Hypothesis (00:15:38)

8. Summary: A Hierarchy of Feature Properties (00:20:08)

9. Demonstrating Superposition (00:21:45)

10. Experiment Setup (00:22:25)

11. Basic Results (00:29:40)

12. Mathematical Understanding (00:35:44)

83 episodi

Artwork
iconCondividi
 
Manage episode 424087973 series 3498845
Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an “ideal” ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout. Empirically, in models we have studied, some of the neurons do cleanly map to features. But it isn't always the case that features correspond so cleanly to neurons, especially in large language models where it actually seems rare for neurons to correspond to clean features. This brings up many questions. Why is it that neurons sometimes align with features and sometimes don't? Why do some models and tasks have many of these clean neurons, while they're vanishingly rare in others?

In this paper, we use toy models — small ReLU networks trained on synthetic data with sparse input features — to investigate how and when models represent more features than they have dimensions. We call this phenomenon superposition . When features are sparse, superposition allows compression beyond what a linear model would do, at the cost of "interference" that requires nonlinear filtering.

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Capitoli

1. Toy Models of Superposition (00:00:00)

2. Definitions and Motivation: Features, Directions, and Superposition (00:00:11)

3. Empirical Phenomena (00:03:59)

4. What are Features? (00:06:08)

5. Features as Directions (00:09:20)

6. Privileged vs Non-privileged Bases (00:13:06)

7. The Superposition Hypothesis (00:15:38)

8. Summary: A Hierarchy of Feature Properties (00:20:08)

9. Demonstrating Superposition (00:21:45)

10. Experiment Setup (00:22:25)

11. Basic Results (00:29:40)

12. Mathematical Understanding (00:35:44)

83 episodi

Kaikki jaksot

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida