Artwork

Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

From Cloud Native to AI Native: Where Are We Going?

44:20
 
Condividi
 

Manage episode 521652287 series 2574278
Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

At KubeCon + CloudNativeCon 2025 in Atlanta, the panel of experts - Kate Goldenring of Fermyon Technologies, Idit Levine of Solo.io, Shaun O'Meara of Mirantis, Sean O'Dell of Dynatrace and James Harmison of Red Hat - explored whether the cloud native era has evolved into an AI native era — and what that shift means for infrastructure, security and development practices. Jonathan Bryce of the CNCF argued that true AI-native systems depend on robust inference layers, which have been overshadowed by the hype around chatbots and agents. As organizations push AI to the edge and demand faster, more personalized experiences, Fermyon’s Kate Goldenring highlighted WebAssembly as a way to bundle and securely deploy models directly to GPU-equipped hardware, reducing latency while adding sandboxed security.

Dynatrace’s Sean O’Dell noted that AI dramatically increases observability needs: integrating LLM-based intelligence adds value but also expands the challenge of filtering massive data streams to understand user behavior. Meanwhile, Mirantis CTO Shaun O’Meara emphasized a return to deeper infrastructure awareness. Unlike abstracted cloud native workloads, AI workloads running on GPUs require careful attention to hardware performance, orchestration, and energy constraints. Managing power-hungry data centers efficiently, he argued, will be a defining challenge of the AI native era.

Learn more from The New Stack about evolving cloud native ecosystem to an AI native era

Cloud Native and AI: Why Open Source Needs Standards Like MCP

A Decade of Cloud Native: From CNCF, to the Pandemic, to AI

Crossing the AI Chasm: Lessons From the Early Days of Cloud

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

305 episodi

Artwork
iconCondividi
 
Manage episode 521652287 series 2574278
Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

At KubeCon + CloudNativeCon 2025 in Atlanta, the panel of experts - Kate Goldenring of Fermyon Technologies, Idit Levine of Solo.io, Shaun O'Meara of Mirantis, Sean O'Dell of Dynatrace and James Harmison of Red Hat - explored whether the cloud native era has evolved into an AI native era — and what that shift means for infrastructure, security and development practices. Jonathan Bryce of the CNCF argued that true AI-native systems depend on robust inference layers, which have been overshadowed by the hype around chatbots and agents. As organizations push AI to the edge and demand faster, more personalized experiences, Fermyon’s Kate Goldenring highlighted WebAssembly as a way to bundle and securely deploy models directly to GPU-equipped hardware, reducing latency while adding sandboxed security.

Dynatrace’s Sean O’Dell noted that AI dramatically increases observability needs: integrating LLM-based intelligence adds value but also expands the challenge of filtering massive data streams to understand user behavior. Meanwhile, Mirantis CTO Shaun O’Meara emphasized a return to deeper infrastructure awareness. Unlike abstracted cloud native workloads, AI workloads running on GPUs require careful attention to hardware performance, orchestration, and energy constraints. Managing power-hungry data centers efficiently, he argued, will be a defining challenge of the AI native era.

Learn more from The New Stack about evolving cloud native ecosystem to an AI native era

Cloud Native and AI: Why Open Source Needs Standards Like MCP

A Decade of Cloud Native: From CNCF, to the Pandemic, to AI

Crossing the AI Chasm: Lessons From the Early Days of Cloud

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

305 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci