Artwork

Contenuto fornito da Hugo Bowne-Anderson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Hugo Bowne-Anderson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Episode 2: Making Data Science Uncool Again

1:45:45
 
Condividi
 

Manage episode 320853165 series 3317544
Contenuto fornito da Hugo Bowne-Anderson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Hugo Bowne-Anderson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Jeremy Howard is a data scientist, researcher, developer, educator, and entrepreneur. Jeremy is a founding researcher at fast.ai, a research institute dedicated to making deep learning more accessible. He is also a Distinguished Research Scientist at the University of San Francisco, the chair of WAMRI, and is Chief Scientist at platform.ai.

In this conversation, we’ll be talking about the history of data science, machine learning, and AI, where we’ve come from and where we’re going, how new techniques can be applied to real-world problems, whether it be deep learning to medicine or porting techniques from computer vision to NLP. We’ll also talk about what’s present and what’s missing in the ML skills revolution, what software engineering skills data scientists need to learn, how to cope in a space of such fragmented tooling, and paths for emerging out of the shadow of FAANG. If that’s not enough, we’ll jump into how spreading DS skills around the globe involves serious investments in education, building software, communities, and research, along with diving into the social challenges that the information age and the AI revolution (so to speak) bring with it.

But to get to all of this, you’ll need to listen to a few minutes of us chatting about chocolate biscuits in Australia!

Links

  continue reading

37 episodi

Artwork
iconCondividi
 
Manage episode 320853165 series 3317544
Contenuto fornito da Hugo Bowne-Anderson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Hugo Bowne-Anderson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Jeremy Howard is a data scientist, researcher, developer, educator, and entrepreneur. Jeremy is a founding researcher at fast.ai, a research institute dedicated to making deep learning more accessible. He is also a Distinguished Research Scientist at the University of San Francisco, the chair of WAMRI, and is Chief Scientist at platform.ai.

In this conversation, we’ll be talking about the history of data science, machine learning, and AI, where we’ve come from and where we’re going, how new techniques can be applied to real-world problems, whether it be deep learning to medicine or porting techniques from computer vision to NLP. We’ll also talk about what’s present and what’s missing in the ML skills revolution, what software engineering skills data scientists need to learn, how to cope in a space of such fragmented tooling, and paths for emerging out of the shadow of FAANG. If that’s not enough, we’ll jump into how spreading DS skills around the globe involves serious investments in education, building software, communities, and research, along with diving into the social challenges that the information age and the AI revolution (so to speak) bring with it.

But to get to all of this, you’ll need to listen to a few minutes of us chatting about chocolate biscuits in Australia!

Links

  continue reading

37 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida