Artwork

Contenuto fornito da Jon Krohn. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jon Krohn o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

801: Merged LLMs Are Smaller And More Capable, with Arcee AI's Mark McQuade and Charles Goddard

1:17:05
 
Condividi
 

Manage episode 429700476 series 1278026
Contenuto fornito da Jon Krohn. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jon Krohn o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Merged LLMs are the future, and we’re exploring how with Mark McQuade and Charles Goddard from Arcee AI on this episode with Jon Krohn. Learn how to combine multiple LLMs without adding bulk, train more efficiently, and dive into different expert approaches. Discover how smaller models can outperform larger ones and leverage open-source projects for big enterprise wins. This episode is packed with must-know insights for data scientists and ML engineers. Don’t miss out!

Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

• Explanation of Charles' job title: Chief of Frontier Research [03:31]

• Model Merging Technology combining multiple LLMs without increasing size [04:43]

• Using MergeKit for model merging [14:49]

• Evolutionary Model Merging using evolutionary algorithms [22:55]

• Commercial applications and success stories [28:10]

• Comparison of Mixture of Experts (MoE) vs. Mixture of Agents [37:57]

• Spectrum Project for efficient training by targeting specific modules [54:28]

• Future of Small Language Models (SLMs) and their advantages [01:01:22]

Additional materials: www.superdatascience.com/801

  continue reading

1143 episodi

Artwork
iconCondividi
 
Manage episode 429700476 series 1278026
Contenuto fornito da Jon Krohn. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jon Krohn o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Merged LLMs are the future, and we’re exploring how with Mark McQuade and Charles Goddard from Arcee AI on this episode with Jon Krohn. Learn how to combine multiple LLMs without adding bulk, train more efficiently, and dive into different expert approaches. Discover how smaller models can outperform larger ones and leverage open-source projects for big enterprise wins. This episode is packed with must-know insights for data scientists and ML engineers. Don’t miss out!

Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

• Explanation of Charles' job title: Chief of Frontier Research [03:31]

• Model Merging Technology combining multiple LLMs without increasing size [04:43]

• Using MergeKit for model merging [14:49]

• Evolutionary Model Merging using evolutionary algorithms [22:55]

• Commercial applications and success stories [28:10]

• Comparison of Mixture of Experts (MoE) vs. Mixture of Agents [37:57]

• Spectrum Project for efficient training by targeting specific modules [54:28]

• Future of Small Language Models (SLMs) and their advantages [01:01:22]

Additional materials: www.superdatascience.com/801

  continue reading

1143 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida