Artwork

Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Intro to Brain-Like-AGI Safety

1:02:10
 
Condividi
 

Manage episode 424087969 series 3498845
Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

(Sections 3.1-3.4, 6.1-6.2, and 7.1-7.5)

Suppose we someday build an Artificial General Intelligence algorithm using similar principles of learning and cognition as the human brain. How would we use such an algorithm safely?

I will argue that this is an open technical problem, and my goal in this post series is to bring readers with no prior knowledge all the way up to the front-line of unsolved problems as I see them.

If this whole thing seems weird or stupid, you should start right in on Post #1, which contains definitions, background, and motivation. Then Posts #2#7 are mainly neuroscience, and Posts #8#15 are more directly about AGI safety, ending with a list of open questions and advice for getting involved in the field.

Source:

https://www.lesswrong.com/s/HzcM2dkCq7fwXBej8

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Capitoli

1. Intro to Brain-Like-AGI Safety (00:00:00)

2. 3. Two subsystems: Learning & Steering (00:00:14)

3. 3.1 Post summary / Table of contents (00:00:19)

4. 3.2 Big picture (00:04:07)

5. 3.2.1 Each subsystem generally needs its own sensory processor (00:09:35)

6. 3.3 “Triune Brain Theory” is wrong, but let’s not throw out the baby with the bathwater (00:12:27)

7. 3.4 Three types of ingredients in a Steering Subsystem (00:16:35)

8. 3.4.1 Summary table (00:16:44)

9. 3.4.2 Aside: what do I mean by “drives”? (00:18:37)

10. 3.4.3 Category A: Things the Steering Subsystem needs to do in order to get general intelligence (e.g. curiosity drive) (00:20:46)

11. 3.4.4 Category B: Everything else in the human Steering Subsystem (e.g. altruism-related drives) (00:24:15)

12. 3.4.5 Category C: Every other possibility (e.g. drive to increase my bank account balance) (00:28:26)

13. 6. Big picture of motivation, decision-making, and RL (00:31:19)

14. 6.1 Post summary / Table of contents (00:31:30)

15. 6.2 Big picture (00:35:54)

16. 6.2.1 Relation to “two subsystems” (00:37:43)

17. 6.2.2 Quick run-through (00:38:41)

18. 7. From hardcoded drives to foresighted plans: A worked example (00:42:30)

19. 7.1 Post summary / Table of contents (00:42:43)

20. 7.2 Reminder from the previous post: big picture of motivation and decision-making (00:45:24)

21. 7.3 Building a probabilistic generative world-model in the cortex (00:46:21)

22. 7.4 Credit assignment when I first bite into the cake (00:48:40)

23. 7.5 Planning towards goals via reward-shaping (00:53:53)

24. 7.5.1 The other Thought Assessors. Or: The heroic feat of ordering a cake for next week, when you’re feeling nauseous right now (00:59:09)

80 episodi

Artwork
iconCondividi
 
Manage episode 424087969 series 3498845
Contenuto fornito da BlueDot Impact. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da BlueDot Impact o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

(Sections 3.1-3.4, 6.1-6.2, and 7.1-7.5)

Suppose we someday build an Artificial General Intelligence algorithm using similar principles of learning and cognition as the human brain. How would we use such an algorithm safely?

I will argue that this is an open technical problem, and my goal in this post series is to bring readers with no prior knowledge all the way up to the front-line of unsolved problems as I see them.

If this whole thing seems weird or stupid, you should start right in on Post #1, which contains definitions, background, and motivation. Then Posts #2#7 are mainly neuroscience, and Posts #8#15 are more directly about AGI safety, ending with a list of open questions and advice for getting involved in the field.

Source:

https://www.lesswrong.com/s/HzcM2dkCq7fwXBej8

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Capitoli

1. Intro to Brain-Like-AGI Safety (00:00:00)

2. 3. Two subsystems: Learning & Steering (00:00:14)

3. 3.1 Post summary / Table of contents (00:00:19)

4. 3.2 Big picture (00:04:07)

5. 3.2.1 Each subsystem generally needs its own sensory processor (00:09:35)

6. 3.3 “Triune Brain Theory” is wrong, but let’s not throw out the baby with the bathwater (00:12:27)

7. 3.4 Three types of ingredients in a Steering Subsystem (00:16:35)

8. 3.4.1 Summary table (00:16:44)

9. 3.4.2 Aside: what do I mean by “drives”? (00:18:37)

10. 3.4.3 Category A: Things the Steering Subsystem needs to do in order to get general intelligence (e.g. curiosity drive) (00:20:46)

11. 3.4.4 Category B: Everything else in the human Steering Subsystem (e.g. altruism-related drives) (00:24:15)

12. 3.4.5 Category C: Every other possibility (e.g. drive to increase my bank account balance) (00:28:26)

13. 6. Big picture of motivation, decision-making, and RL (00:31:19)

14. 6.1 Post summary / Table of contents (00:31:30)

15. 6.2 Big picture (00:35:54)

16. 6.2.1 Relation to “two subsystems” (00:37:43)

17. 6.2.2 Quick run-through (00:38:41)

18. 7. From hardcoded drives to foresighted plans: A worked example (00:42:30)

19. 7.1 Post summary / Table of contents (00:42:43)

20. 7.2 Reminder from the previous post: big picture of motivation and decision-making (00:45:24)

21. 7.3 Building a probabilistic generative world-model in the cortex (00:46:21)

22. 7.4 Credit assignment when I first bite into the cake (00:48:40)

23. 7.5 Planning towards goals via reward-shaping (00:53:53)

24. 7.5.1 The other Thought Assessors. Or: The heroic feat of ordering a cake for next week, when you’re feeling nauseous right now (00:59:09)

80 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida