Skąd biorą się pomysły na niecodzienną obsługę klienta? Czego pragną klienci? Jak zbudować doskonałą relację marki z klientami? Które technologie zrewolucjonizują świat klienta? Jak skutecznie się komunikować? Dokąd zmierza sprzedaż? Czy customer experience jest tak ważny jak mówią? Skąd biorą się inspirujące historie? Jak mówić prosto? Czym zachwyca nas świat ? W ciągu ostatnich 7 lat zadaliśmy sobie i naszym gościom kilka tysięcy takich pytań. Zbudowaliśmy unikalne miejsce, które jest dzis ...
…
continue reading
Contenuto fornito da Vladimir. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Vladimir o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !
Vai offline con l'app Player FM !
BM128: Czy warto inwestować LLM? Czy w klasyczny ML?
Manage episode 439308995 series 1407887
Contenuto fornito da Vladimir. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Vladimir o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Czy sztuczna inteligencja zastąpi klasyczne uczenie maszynowe? Dowiedz się, jak skutecznie wykorzystać obie technologie w biznesie!
✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1
👍 Zostaw like!
❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko
📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie!
Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe.
W tym odcinku dowiesz się:
• Jakie są kluczowe różnice między LLM a klasycznym ML?
• Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście?
• Jak łączyć obie technologie dla uzyskania najlepszych rezultatów?
• Jakie są praktyczne zastosowania LLM w biznesie?
Najważniejsze tematy:
1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych.
2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników.
3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi.
4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod.
5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM.
6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji.
7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach.
Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym.
Ten podcast to KONIECZNIE POZYCJA dla każdego, kto:
- Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie
- Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie
- Chce być na bieżąco z najnowszymi trendami w AI
Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4
Autorskie kursy Vladimira:
👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning
👉 Python - https://dataworkshop.eu/pl/intro-python
👉 Statystyka - https://dataworkshop.eu/statistics
👉 SQL - https://dataworkshop.eu/pl/sql
👉 Time Series - https://dataworkshop.eu/pl/time-series
👉 NLP - https://dataworkshop.eu/pl/nlp
🔥 Chcesz uczyć się ML/DS w DataWorkshop? Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie.
https://dataworkshop.typeform.com/to/YCBMn37h
Linki do podcastu:
📌 https://youtu.be/4pfEZuw3dtE
📌 https://biznesmysli.pl
📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277
📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I
📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_
📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604
#machinelearning #datascience #genai #llm #ml #ai
…
continue reading
✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1
👍 Zostaw like!
❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko
📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie!
Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe.
W tym odcinku dowiesz się:
• Jakie są kluczowe różnice między LLM a klasycznym ML?
• Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście?
• Jak łączyć obie technologie dla uzyskania najlepszych rezultatów?
• Jakie są praktyczne zastosowania LLM w biznesie?
Najważniejsze tematy:
1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych.
2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników.
3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi.
4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod.
5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM.
6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji.
7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach.
Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym.
Ten podcast to KONIECZNIE POZYCJA dla każdego, kto:
- Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie
- Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie
- Chce być na bieżąco z najnowszymi trendami w AI
Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4
Autorskie kursy Vladimira:
👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning
👉 Python - https://dataworkshop.eu/pl/intro-python
👉 Statystyka - https://dataworkshop.eu/statistics
👉 SQL - https://dataworkshop.eu/pl/sql
👉 Time Series - https://dataworkshop.eu/pl/time-series
👉 NLP - https://dataworkshop.eu/pl/nlp
🔥 Chcesz uczyć się ML/DS w DataWorkshop? Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie.
https://dataworkshop.typeform.com/to/YCBMn37h
Linki do podcastu:
📌 https://youtu.be/4pfEZuw3dtE
📌 https://biznesmysli.pl
📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277
📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I
📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_
📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604
#machinelearning #datascience #genai #llm #ml #ai
223 episodi
Manage episode 439308995 series 1407887
Contenuto fornito da Vladimir. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Vladimir o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Czy sztuczna inteligencja zastąpi klasyczne uczenie maszynowe? Dowiedz się, jak skutecznie wykorzystać obie technologie w biznesie!
✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1
👍 Zostaw like!
❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko
📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie!
Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe.
W tym odcinku dowiesz się:
• Jakie są kluczowe różnice między LLM a klasycznym ML?
• Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście?
• Jak łączyć obie technologie dla uzyskania najlepszych rezultatów?
• Jakie są praktyczne zastosowania LLM w biznesie?
Najważniejsze tematy:
1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych.
2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników.
3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi.
4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod.
5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM.
6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji.
7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach.
Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym.
Ten podcast to KONIECZNIE POZYCJA dla każdego, kto:
- Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie
- Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie
- Chce być na bieżąco z najnowszymi trendami w AI
Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4
Autorskie kursy Vladimira:
👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning
👉 Python - https://dataworkshop.eu/pl/intro-python
👉 Statystyka - https://dataworkshop.eu/statistics
👉 SQL - https://dataworkshop.eu/pl/sql
👉 Time Series - https://dataworkshop.eu/pl/time-series
👉 NLP - https://dataworkshop.eu/pl/nlp
🔥 Chcesz uczyć się ML/DS w DataWorkshop? Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie.
https://dataworkshop.typeform.com/to/YCBMn37h
Linki do podcastu:
📌 https://youtu.be/4pfEZuw3dtE
📌 https://biznesmysli.pl
📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277
📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I
📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_
📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604
#machinelearning #datascience #genai #llm #ml #ai
…
continue reading
✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1
👍 Zostaw like!
❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko
📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie!
Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe.
W tym odcinku dowiesz się:
• Jakie są kluczowe różnice między LLM a klasycznym ML?
• Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście?
• Jak łączyć obie technologie dla uzyskania najlepszych rezultatów?
• Jakie są praktyczne zastosowania LLM w biznesie?
Najważniejsze tematy:
1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych.
2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników.
3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi.
4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod.
5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM.
6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji.
7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach.
Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym.
Ten podcast to KONIECZNIE POZYCJA dla każdego, kto:
- Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie
- Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie
- Chce być na bieżąco z najnowszymi trendami w AI
Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4
Autorskie kursy Vladimira:
👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning
👉 Python - https://dataworkshop.eu/pl/intro-python
👉 Statystyka - https://dataworkshop.eu/statistics
👉 SQL - https://dataworkshop.eu/pl/sql
👉 Time Series - https://dataworkshop.eu/pl/time-series
👉 NLP - https://dataworkshop.eu/pl/nlp
🔥 Chcesz uczyć się ML/DS w DataWorkshop? Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie.
https://dataworkshop.typeform.com/to/YCBMn37h
Linki do podcastu:
📌 https://youtu.be/4pfEZuw3dtE
📌 https://biznesmysli.pl
📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277
📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I
📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_
📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604
#machinelearning #datascience #genai #llm #ml #ai
223 episodi
Tutti gli episodi
×Benvenuto su Player FM!
Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.