Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Contenuto fornito da DataTalks.Club. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da DataTalks.Club o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !
Vai offline con l'app Player FM !
From Scratch to Success: Building an MLOps Team and ML Platform - Simon Stiebellehner
Manage episode 367531568 series 2831626
Contenuto fornito da DataTalks.Club. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da DataTalks.Club o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
We talked about:
- Simon's background
- What MLOps is and what it isn't
- Skills needed to build an ML platform that serves 100s of models
- Ranking the importance of skills
- The point where you should think about building an ML platform
- The importance of processes in ML platforms
- Weighing your options with SaaS platforms
- The exploratory setup, experiment tracking, and model registry
- What comes after deployment?
- Stitching tools together to create an ML platform
- Keeping data governance in mind when building a platform
- What comes first – the model or the platform?
- Do MLOps engineers need to have deep knowledge of how models work?
- Is API design important for MLOps?
- Simon's recommendations for furthering MLOps knowledge
Links:
- LinkedIn: https://www.linkedin.com/in/simonstiebellehner/
- Github: https://github.com/stiebels
- Medium: https://medium.com/@sistel
Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp
Join DataTalks.Club: https://datatalks.club/slack.html
Our events: https://datatalks.club/events.html
181 episodi
Manage episode 367531568 series 2831626
Contenuto fornito da DataTalks.Club. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da DataTalks.Club o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
We talked about:
- Simon's background
- What MLOps is and what it isn't
- Skills needed to build an ML platform that serves 100s of models
- Ranking the importance of skills
- The point where you should think about building an ML platform
- The importance of processes in ML platforms
- Weighing your options with SaaS platforms
- The exploratory setup, experiment tracking, and model registry
- What comes after deployment?
- Stitching tools together to create an ML platform
- Keeping data governance in mind when building a platform
- What comes first – the model or the platform?
- Do MLOps engineers need to have deep knowledge of how models work?
- Is API design important for MLOps?
- Simon's recommendations for furthering MLOps knowledge
Links:
- LinkedIn: https://www.linkedin.com/in/simonstiebellehner/
- Github: https://github.com/stiebels
- Medium: https://medium.com/@sistel
Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp
Join DataTalks.Club: https://datatalks.club/slack.html
Our events: https://datatalks.club/events.html
181 episodi
Kaikki jaksot
×Benvenuto su Player FM!
Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.