Artwork

Contenuto fornito da Jay Shah. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jay Shah o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Intuition for research in Social Reinforcement Learning | Natasha Jacques

6:52
 
Condividi
 

Manage episode 297873477 series 2859018
Contenuto fornito da Jay Shah. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jay Shah o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

How can we build intuition for interdisciplinary fields in order to tackle challenges in social reinforcement learning?
Natasha Jaques is currently a Research Scientist at Google Brain and a post-doc fellow at UC Berkeley, where her research interests are in designing multi-agent RL algorithms while focusing on social reinforcement learning. She received her Ph.D. from MIT and has also received multiple awards for her research works submitted to venues like ICML and NeurIPS She has interned at DeepMind, Google Brain, and is an OpenAI Scholars mentor.
About the Host:
Jay is a Ph.D. student at Arizona State University, doing research on building Interpretable AI models for Medical Diagnosis.
Jay Shah: https://www.linkedin.com/in/shahjay22/
You can reach out to https://www.public.asu.edu/~jgshah1/ for any queries.
Stay tuned for upcoming webinars!
***Disclaimer: The information contained in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***

Checkout these Podcasts on YouTube: https://www.youtube.com/c/JayShahml
About the author: https://www.public.asu.edu/~jgshah1/

  continue reading

92 episodi

Artwork
iconCondividi
 
Manage episode 297873477 series 2859018
Contenuto fornito da Jay Shah. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Jay Shah o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

How can we build intuition for interdisciplinary fields in order to tackle challenges in social reinforcement learning?
Natasha Jaques is currently a Research Scientist at Google Brain and a post-doc fellow at UC Berkeley, where her research interests are in designing multi-agent RL algorithms while focusing on social reinforcement learning. She received her Ph.D. from MIT and has also received multiple awards for her research works submitted to venues like ICML and NeurIPS She has interned at DeepMind, Google Brain, and is an OpenAI Scholars mentor.
About the Host:
Jay is a Ph.D. student at Arizona State University, doing research on building Interpretable AI models for Medical Diagnosis.
Jay Shah: https://www.linkedin.com/in/shahjay22/
You can reach out to https://www.public.asu.edu/~jgshah1/ for any queries.
Stay tuned for upcoming webinars!
***Disclaimer: The information contained in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***

Checkout these Podcasts on YouTube: https://www.youtube.com/c/JayShahml
About the author: https://www.public.asu.edu/~jgshah1/

  continue reading

92 episodi

Tất cả các tập

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida