Artwork

Contenuto fornito da Richard M. Golden, M.S.E.E., and B.S.E.E.. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Richard M. Golden, M.S.E.E., and B.S.E.E. o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

LM101-086: Ch8: How to Learn the Probability of Infinitely Many Outcomes

35:29
 
Condividi
 

Manage episode 298011309 series 2497400
Contenuto fornito da Richard M. Golden, M.S.E.E., and B.S.E.E.. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Richard M. Golden, M.S.E.E., and B.S.E.E. o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This 86th episode of Learning Machines 101 discusses the problem of assigning probabilities to a possibly infinite set of outcomes in a space-time continuum which characterizes our physical world. Such a set is called an "environmental event". The machine learning algorithm uses information about the frequency of environmental events to support learning. If we want to study statistical machine learning, then we must be able to discuss how to represent and compute the probability of an environmental event. It is essential that we have methods for communicating probability concepts to other researchers, methods for calculating probabilities, and methods for calculating the expectation of specific environmental events. This episode discusses the challenges of assigning probabilities to events when we allow for the case of events comprised of an infinite number of outcomes. Along the way we introduce essential concepts for representing and computing probabilities using measure theory mathematical tools such as sigma fields, and the Radon-Nikodym probability density function. Near the end we also briefly discuss the intriguing Banach-Tarski paradox and how it motivates the development of some of these special mathematical tools. Check out: www.learningmachines101.com and www.statisticalmachinelearning.com for more information!!!

  continue reading

85 episodi

Artwork
iconCondividi
 
Manage episode 298011309 series 2497400
Contenuto fornito da Richard M. Golden, M.S.E.E., and B.S.E.E.. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Richard M. Golden, M.S.E.E., and B.S.E.E. o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This 86th episode of Learning Machines 101 discusses the problem of assigning probabilities to a possibly infinite set of outcomes in a space-time continuum which characterizes our physical world. Such a set is called an "environmental event". The machine learning algorithm uses information about the frequency of environmental events to support learning. If we want to study statistical machine learning, then we must be able to discuss how to represent and compute the probability of an environmental event. It is essential that we have methods for communicating probability concepts to other researchers, methods for calculating probabilities, and methods for calculating the expectation of specific environmental events. This episode discusses the challenges of assigning probabilities to events when we allow for the case of events comprised of an infinite number of outcomes. Along the way we introduce essential concepts for representing and computing probabilities using measure theory mathematical tools such as sigma fields, and the Radon-Nikodym probability density function. Near the end we also briefly discuss the intriguing Banach-Tarski paradox and how it motivates the development of some of these special mathematical tools. Check out: www.learningmachines101.com and www.statisticalmachinelearning.com for more information!!!

  continue reading

85 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci