Artwork

Contenuto fornito da Linear Digressions, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Linear Digressions, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !
icon Daily Deals

Interesting technical issues prompted by GDPR and data privacy concerns

20:26
 
Condividi
 

Manage episode 253667361 series 2527355
Contenuto fornito da Linear Digressions, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Linear Digressions, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Data privacy is a huge issue right now, after years of consumers and users gaining awareness of just how much of their personal data is out there and how companies are using it. Policies like GDPR are imposing more stringent rules on who can use what data for what purposes, with an end goal of giving consumers more control and privacy around their data. This episode digs into this topic, but not from a security or legal perspective—this week, we talk about some of the interesting technical challenges introduced by a simple idea: a company should remove a user’s data from their database when that user asks to be removed. We talk about two topics, namely using Bloom filters to efficiently find records in a database (and what Bloom filters are, for that matter) and types of machine learning algorithms that can un-learn their training data when it contains records that need to be deleted.
  continue reading

291 episodi

Artwork
iconCondividi
 
Manage episode 253667361 series 2527355
Contenuto fornito da Linear Digressions, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Linear Digressions, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Data privacy is a huge issue right now, after years of consumers and users gaining awareness of just how much of their personal data is out there and how companies are using it. Policies like GDPR are imposing more stringent rules on who can use what data for what purposes, with an end goal of giving consumers more control and privacy around their data. This episode digs into this topic, but not from a security or legal perspective—this week, we talk about some of the interesting technical challenges introduced by a simple idea: a company should remove a user’s data from their database when that user asks to be removed. We talk about two topics, namely using Bloom filters to efficiently find records in a database (and what Bloom filters are, for that matter) and types of machine learning algorithms that can un-learn their training data when it contains records that need to be deleted.
  continue reading

291 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci