Artwork

Contenuto fornito da MIT Technology Review. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MIT Technology Review o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Is robotics about to have its own ChatGPT moment?

26:17
 
Condividi
 

Manage episode 449912027 series 2770555
Contenuto fornito da MIT Technology Review. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MIT Technology Review o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Robots that can do many of the things humans do in the home—folding laundry, cooking meals, cleaning—have been a dream of robotics research since the inception of the field in the 1950s.

While engineers have made great progress in getting robots to work in tightly controlled environments like labs and factories, the home has proved difficult to design for. Out in the real, messy world, furniture and floor plans differ wildly; children and pets can jump in a robot’s way; and clothes that need folding come in different shapes, colors, and sizes. Managing such unpredictable settings and varied conditions has been beyond the capabilities of even the most advanced robot prototypes.

But now, the field is at an inflection point. A new generation of researchers believes that generative AI could give robots the ability to learn new skills and adapt to new environments faster than ever before. This new approach, just maybe, can finally bring robots out of the factory and into the mainstream.

This story was written by senior AI reporter Melissa Heikkilä and narrated by Noa - newsoveraudio.com

  continue reading

106 episodi

Artwork
iconCondividi
 
Manage episode 449912027 series 2770555
Contenuto fornito da MIT Technology Review. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MIT Technology Review o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Robots that can do many of the things humans do in the home—folding laundry, cooking meals, cleaning—have been a dream of robotics research since the inception of the field in the 1950s.

While engineers have made great progress in getting robots to work in tightly controlled environments like labs and factories, the home has proved difficult to design for. Out in the real, messy world, furniture and floor plans differ wildly; children and pets can jump in a robot’s way; and clothes that need folding come in different shapes, colors, and sizes. Managing such unpredictable settings and varied conditions has been beyond the capabilities of even the most advanced robot prototypes.

But now, the field is at an inflection point. A new generation of researchers believes that generative AI could give robots the ability to learn new skills and adapt to new environments faster than ever before. This new approach, just maybe, can finally bring robots out of the factory and into the mainstream.

This story was written by senior AI reporter Melissa Heikkilä and narrated by Noa - newsoveraudio.com

  continue reading

106 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida