Artwork

Contenuto fornito da Demetrios Brinkmann. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Demetrios Brinkmann o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

A Blueprint for Scalable & Reliable Enterprise AI/ML Systems // Panel // AIQCON

35:38
 
Condividi
 

Manage episode 430856921 series 3241972
Contenuto fornito da Demetrios Brinkmann. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Demetrios Brinkmann o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This is a Panel taken from the recent AI Quality Conference presented by the MLOps COmmunity and Kolena

// Abstract Enterprise AI leaders continue to explore the best productivity solutions that solve business problems, mitigate risks, and increase efficiency. Building reliable and secure AI/ML systems requires following industry standards, an operating framework, and best practices that can accelerate and streamline the scalable architecture that can produce expected business outcomes. This session, featuring veteran practitioners, focuses on building scalable, reliable, and quality AI and ML systems for the enterprises. // Panelists - Hira Dangol: VP, AI/ML and Automation @ Bank of America - Rama Akkiraju: VP, Enterprise AI/ML @ NVIDIA - Nitin Aggarwal: Head of AI Services @ Google - Steven Eliuk: VP, AI and Governance @ IBM A big thank you to our Premium Sponsors Google Cloud & Databricks for their generous support!

Timestamps:

00:00 Panelists discuss vision and strategy in AI

05:18 Steven Eliuk, IBM expertise in data services

07:30 AI as means to improve business metrics

11:10 Key metrics in production systems: efficiency and revenue

13:50 Consistency in data standards aids data integration

17:47 Generative AI presents new data classification risks

22:47 Evaluating implications, monitoring, and validating use cases

26:41 Evaluating natural language answers for efficient production

29:10 Monitoring AI models for performance and ethics

31:14 AI metrics and user responsibility for future models

34:56 Access to data is improving, promising progress

  continue reading

391 episodi

Artwork
iconCondividi
 
Manage episode 430856921 series 3241972
Contenuto fornito da Demetrios Brinkmann. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Demetrios Brinkmann o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This is a Panel taken from the recent AI Quality Conference presented by the MLOps COmmunity and Kolena

// Abstract Enterprise AI leaders continue to explore the best productivity solutions that solve business problems, mitigate risks, and increase efficiency. Building reliable and secure AI/ML systems requires following industry standards, an operating framework, and best practices that can accelerate and streamline the scalable architecture that can produce expected business outcomes. This session, featuring veteran practitioners, focuses on building scalable, reliable, and quality AI and ML systems for the enterprises. // Panelists - Hira Dangol: VP, AI/ML and Automation @ Bank of America - Rama Akkiraju: VP, Enterprise AI/ML @ NVIDIA - Nitin Aggarwal: Head of AI Services @ Google - Steven Eliuk: VP, AI and Governance @ IBM A big thank you to our Premium Sponsors Google Cloud & Databricks for their generous support!

Timestamps:

00:00 Panelists discuss vision and strategy in AI

05:18 Steven Eliuk, IBM expertise in data services

07:30 AI as means to improve business metrics

11:10 Key metrics in production systems: efficiency and revenue

13:50 Consistency in data standards aids data integration

17:47 Generative AI presents new data classification risks

22:47 Evaluating implications, monitoring, and validating use cases

26:41 Evaluating natural language answers for efficient production

29:10 Monitoring AI models for performance and ethics

31:14 AI metrics and user responsibility for future models

34:56 Access to data is improving, promising progress

  continue reading

391 episodi

ทุกตอน

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida