Artwork

Contenuto fornito da MRS Bulletin. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MRS Bulletin o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Episode 20: Resistance of analog deep learning device responds in ~5 nanoseconds

5:59
 
Condividi
 

Manage episode 345944970 series 2602554
Contenuto fornito da MRS Bulletin. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MRS Bulletin o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

102 episodi

Artwork
iconCondividi
 
Manage episode 345944970 series 2602554
Contenuto fornito da MRS Bulletin. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MRS Bulletin o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

102 episodi

Todos os episódios

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci