Artwork

Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

ColPali: Document Retrieval with Vision-Language Models only (with Manuel Faysse)

34:48
 
Condividi
 

Manage episode 442295485 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Manuel Faysse, a 2nd year PhD student from CentraleSupélec & Illuin Technology, who is the first author of the paper "ColPali: Efficient Document Retrieval with Vision Language Models". ColPali is making waves in the IR community as a simple but effective new take on embedding documents using their image patches and the late-interaction paradigm popularized by ColBERT. Tune in to learn how Manu conceptualized ColPali, his methodology for tackling new research ideas, and why this new approach outperforms all classic multimodal embedding models. A must-watch episode! Timestamps: 0:00 Introduction with Jakub & Manu 4:09 The "Aha!" moment that led to ColPali 7:06 Challenges that had to be solved 9:16 The main idea behind ColPali 13:20 How ColPali simplifies the IR pipeline 15:54 The ViDoRe benchmark 18:23 Why ColPali is superior to CLIP-based retrievers 20:41 The training setup used for ColPali 24:00 Optimizations to make ColPali more efficient 29:00 How ColPali could work with text-only datasets 31:21 Outro: The next steps for this line of research

  continue reading

21 episodi

Artwork
iconCondividi
 
Manage episode 442295485 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Manuel Faysse, a 2nd year PhD student from CentraleSupélec & Illuin Technology, who is the first author of the paper "ColPali: Efficient Document Retrieval with Vision Language Models". ColPali is making waves in the IR community as a simple but effective new take on embedding documents using their image patches and the late-interaction paradigm popularized by ColBERT. Tune in to learn how Manu conceptualized ColPali, his methodology for tackling new research ideas, and why this new approach outperforms all classic multimodal embedding models. A must-watch episode! Timestamps: 0:00 Introduction with Jakub & Manu 4:09 The "Aha!" moment that led to ColPali 7:06 Challenges that had to be solved 9:16 The main idea behind ColPali 13:20 How ColPali simplifies the IR pipeline 15:54 The ViDoRe benchmark 18:23 Why ColPali is superior to CLIP-based retrievers 20:41 The training setup used for ColPali 24:00 Optimizations to make ColPali more efficient 29:00 How ColPali could work with text-only datasets 31:21 Outro: The next steps for this line of research

  continue reading

21 episodi

Toate episoadele

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci