Artwork

Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Learning to Retrieve Passages without Supervision: finally unsupervised Neural IR?

59:10
 
Condividi
 

Manage episode 355037189 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 episodi

Artwork
iconCondividi
 
Manage episode 355037189 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci