Artwork

Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Open Pre-Trained Transformer Language Models (OPT): What does it take to train GPT-3?

47:12
 
Condividi
 

Manage episode 355037186 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Andrew Yates (Assistant Professor at the University of Amsterdam) and Sergi Castella i Sapé discuss the recent "Open Pre-trained Transformer (OPT) Language Models" from Meta AI (formerly Facebook). In this replication work, Meta developed and trained a 175 Billion parameter Transformer very similar to GPT-3 from OpenAI, documenting the process in detail to share their findings with the community. The code, pretrained weights, and logbook are available on their Github repository (links below).

Links

Feedback Form: https://scastella.typeform.com/to/rg7a5GfJ

📄 OPT paper: https://arxiv.org/abs/2205.01068

👾 Code: https://github.com/facebookresearch/metaseq

📒 Logbook: https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

✍️ OPT Official Blog Post: https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/

OpenAI Embeddings API: https://openai.com/blog/introducing-text-and-code-embeddings/

Nils Reimers' critique of OpenAI Embeddings API: https://medium.com/@nils_reimers/openai-gpt-3-text-embeddings-really-a-new-state-of-the-art-in-dense-text-embeddings-6571fe3ec9d9

Timestamps:

00:00 Introduction and housekeeping: new feedback form, ACL conference highlights

02:42 The convergence between NLP and Neural IR techniques

06:43 Open Pretrained Transformer motivation and scope, reproducing GPT-3 and open-sourcing

08:16 Basics of OPT: architecture, pre-training objective, teacher forcing, tokenizer, training data

13:40 Preliminary experiments findings: hyperparameters, training stability, spikiness

20:08 Problems that appear at scale when training with 992 GPUs

23:01 Using temperature to check whether GPUs are working

25:00 Training the largest model: what to do when the loss explodes? (which happens quite often)

29:15 When they switched away from AdamW to SGD

32:00 Results: successful but not quite GPT-3 level.

Toxicity? 35:45 Replicability of Large Language Models research. Was GPT-3 replicable? What difference does it make?

37:25 What makes a paper replicable?

40:33 Directions in which large Language Models are applied to Information Retrieval

45:15 Final thoughts and takeaways

  continue reading

21 episodi

Artwork
iconCondividi
 
Manage episode 355037186 series 3446693
Contenuto fornito da Zeta Alpha. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Zeta Alpha o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Andrew Yates (Assistant Professor at the University of Amsterdam) and Sergi Castella i Sapé discuss the recent "Open Pre-trained Transformer (OPT) Language Models" from Meta AI (formerly Facebook). In this replication work, Meta developed and trained a 175 Billion parameter Transformer very similar to GPT-3 from OpenAI, documenting the process in detail to share their findings with the community. The code, pretrained weights, and logbook are available on their Github repository (links below).

Links

Feedback Form: https://scastella.typeform.com/to/rg7a5GfJ

📄 OPT paper: https://arxiv.org/abs/2205.01068

👾 Code: https://github.com/facebookresearch/metaseq

📒 Logbook: https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

✍️ OPT Official Blog Post: https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/

OpenAI Embeddings API: https://openai.com/blog/introducing-text-and-code-embeddings/

Nils Reimers' critique of OpenAI Embeddings API: https://medium.com/@nils_reimers/openai-gpt-3-text-embeddings-really-a-new-state-of-the-art-in-dense-text-embeddings-6571fe3ec9d9

Timestamps:

00:00 Introduction and housekeeping: new feedback form, ACL conference highlights

02:42 The convergence between NLP and Neural IR techniques

06:43 Open Pretrained Transformer motivation and scope, reproducing GPT-3 and open-sourcing

08:16 Basics of OPT: architecture, pre-training objective, teacher forcing, tokenizer, training data

13:40 Preliminary experiments findings: hyperparameters, training stability, spikiness

20:08 Problems that appear at scale when training with 992 GPUs

23:01 Using temperature to check whether GPUs are working

25:00 Training the largest model: what to do when the loss explodes? (which happens quite often)

29:15 When they switched away from AdamW to SGD

32:00 Results: successful but not quite GPT-3 level.

Toxicity? 35:45 Replicability of Large Language Models research. Was GPT-3 replicable? What difference does it make?

37:25 What makes a paper replicable?

40:33 Directions in which large Language Models are applied to Information Retrieval

45:15 Final thoughts and takeaways

  continue reading

21 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci