Artwork

Contenuto fornito da OHBM. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da OHBM o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

OHBM 2023 Keynote Interview Series: Emma Robinson

24:59
 
Condividi
 

Manage episode 366681141 series 2888419
Contenuto fornito da OHBM. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da OHBM o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Dr. Emma Robinson is a Senior Lecturer (Assoc. Professor) at King’s College London. Her development of the Multimodal Surface Matching (MSM) software for cortical surface registration has been instrumental to the development of the Human Connectome Project’s multimodal parcellation of the human cortex. She is currently developing interpretable machine learning models to aid in the personalized prediction of disease progression. In this interview, Dr.Robinson describes the advantages of interpretable machine learning models, and the methodological challenges she faced during the development of this framework.

Her approach to identifying disease-related changes in individual brain scans attempts to circumvent two of the limitations of traditional approaches: (1) the over-reliance on population averages, and (2) the opacity of “black-box” machine learning algorithms such as deep neural networks. In addition, Dr. Robinson shared that, following her extensive experience working on the Human Connectome Project, she realized that traditional image registration methods may not be sufficient for individualized predictions.

Finally, Dr. Robinson shared how her relationship with her mentors shaped the trajectory of her current career. Her mentors not only guided her on the application of computational methods to neuroscience, but also encouraged her to develop her own methods.

At OHBM 2023, Dr. Robinson will present how her work contributes to improved personalized predictions of cortical features in patient populations and how interpretable machine learning approaches can enhance precision.

  continue reading

94 episodi

Artwork
iconCondividi
 
Manage episode 366681141 series 2888419
Contenuto fornito da OHBM. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da OHBM o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Dr. Emma Robinson is a Senior Lecturer (Assoc. Professor) at King’s College London. Her development of the Multimodal Surface Matching (MSM) software for cortical surface registration has been instrumental to the development of the Human Connectome Project’s multimodal parcellation of the human cortex. She is currently developing interpretable machine learning models to aid in the personalized prediction of disease progression. In this interview, Dr.Robinson describes the advantages of interpretable machine learning models, and the methodological challenges she faced during the development of this framework.

Her approach to identifying disease-related changes in individual brain scans attempts to circumvent two of the limitations of traditional approaches: (1) the over-reliance on population averages, and (2) the opacity of “black-box” machine learning algorithms such as deep neural networks. In addition, Dr. Robinson shared that, following her extensive experience working on the Human Connectome Project, she realized that traditional image registration methods may not be sufficient for individualized predictions.

Finally, Dr. Robinson shared how her relationship with her mentors shaped the trajectory of her current career. Her mentors not only guided her on the application of computational methods to neuroscience, but also encouraged her to develop her own methods.

At OHBM 2023, Dr. Robinson will present how her work contributes to improved personalized predictions of cortical features in patient populations and how interpretable machine learning approaches can enhance precision.

  continue reading

94 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida