Artwork

Contenuto fornito da open.intel. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da open.intel o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

AI Development and Guardrails

35:38
 
Condividi
 

Manage episode 436656079 series 3446189
Contenuto fornito da open.intel. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da open.intel o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

100 episodi

Artwork
iconCondividi
 
Manage episode 436656079 series 3446189
Contenuto fornito da open.intel. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da open.intel o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

100 episodi

Alle episoder

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci