Artwork

Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

It’s time for data scientists to collaborate with researchers in other disciplines

36:08
 
Condividi
 

Manage episode 372641238 series 3497926
Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

15 episodi

Artwork
iconCondividi
 
Manage episode 372641238 series 3497926
Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

15 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci