Real-Time Entity Resolution Made Accessible
Manage episode 232979673 series 1427720
Contenuto fornito da O'Reilly Radar. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Radar o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
In this episode of the Data Show, I spoke with Jeff Jonas, CEO, founder and chief scientist of Senzing, a startup focused on making real-time entity resolution technologies broadly accessible. He was previously a fellow and chief scientist of context computing at IBM. Entity resolution (ER) refers to techniques and tools for identifying and linking manifestations of the same entity/object/individual. Ironically, ER itself has many different names (e.g., record linkage, duplicate detection, object consolidation/reconciliation, etc.). ER is an essential first step in many domains, including marketing (cleaning up databases), law enforcement (background checks and counterterrorism), and financial services and investing. Knowing exactly who your customers are is an important task for security, fraud detection, marketing, and personalization. The proliferation of data sources and services has made ER very challenging in the internet age. In addition, many applications now increasingly require near real-time entity resolution. We had a great conversation spanning many topics including: Why ER is interesting and challenging How ER technologies have evolved over the years How Senzing is working to democratize ER by making real-time AI technologies accessible to developers Some early use cases for Senzing’s technologies Some items on their research agenda
…
continue reading
443 episodi