Artwork

Contenuto fornito da Michael Kennedy. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Michael Kennedy o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

#497: Outlier Detection with Python

55:22
 
Condividi
 

Manage episode 472623623 series 3501439
Contenuto fornito da Michael Kennedy. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Michael Kennedy o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Have you ever wondered why certain data points stand out so dramatically? They might hold the key to everything from fraud detection to groundbreaking discoveries. This week on Talk Python to Me, we dive into the world of outlier detection with Python with Brett Kennedy. You'll learn how outliers can signal errors, highlight novel insights, or even reveal hidden patterns lurking in the data you thought you understood. We'll explore fresh research developments, practical use cases, and how outlier detection compares to other core data science tasks like prediction and clustering. If you're ready to spot those game-changing anomalies in your own projects, stay tuned.
Discount code for book: TPkennedy3 (45% off, no expiration date)
Episode sponsors
Posit
Python in Production
Talk Python Courses

Links from the show

Data-morph: github.com
PyOD: github.com
Prophet: github.com
Episode transcripts: talkpython.fm
--- Stay in touch with us ---
Subscribe to Talk Python on YouTube: youtube.com
Talk Python on Bluesky: @talkpython.fm at bsky.app
Talk Python on Mastodon: talkpython
Michael on Bluesky: @mkennedy.codes at bsky.app
Michael on Mastodon: mkennedy
  continue reading

498 episodi

Artwork
iconCondividi
 
Manage episode 472623623 series 3501439
Contenuto fornito da Michael Kennedy. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Michael Kennedy o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Have you ever wondered why certain data points stand out so dramatically? They might hold the key to everything from fraud detection to groundbreaking discoveries. This week on Talk Python to Me, we dive into the world of outlier detection with Python with Brett Kennedy. You'll learn how outliers can signal errors, highlight novel insights, or even reveal hidden patterns lurking in the data you thought you understood. We'll explore fresh research developments, practical use cases, and how outlier detection compares to other core data science tasks like prediction and clustering. If you're ready to spot those game-changing anomalies in your own projects, stay tuned.
Discount code for book: TPkennedy3 (45% off, no expiration date)
Episode sponsors
Posit
Python in Production
Talk Python Courses

Links from the show

Data-morph: github.com
PyOD: github.com
Prophet: github.com
Episode transcripts: talkpython.fm
--- Stay in touch with us ---
Subscribe to Talk Python on YouTube: youtube.com
Talk Python on Bluesky: @talkpython.fm at bsky.app
Talk Python on Mastodon: talkpython
Michael on Bluesky: @mkennedy.codes at bsky.app
Michael on Mastodon: mkennedy
  continue reading

498 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci