Artwork

Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Building Resilient Data Systems for Modern Enterprises at Astrafy with Andrea Bombino

28:29
 
Condividi
 

Manage episode 448913206 series 2053958
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Artwork
iconCondividi
 
Manage episode 448913206 series 2053958
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci