Artwork

Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Building Scalable ML Infrastructure at Outerbounds with Savin Goyal

36:46
 
Condividi
 

Manage episode 471109690 series 2053958
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Artwork
iconCondividi
 
Manage episode 471109690 series 2053958
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci