Artwork

Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Harnessing Airflow for Data-Driven Policy Research at CSET with Jennifer Melot

17:54
 
Condividi
 

Manage episode 468755901 series 2948506
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Artwork
iconCondividi
 
Manage episode 468755901 series 2948506
Contenuto fornito da The Data Flowcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Data Flowcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci