Artwork

Contenuto fornito da Grant Kay. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Grant Kay o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Machine Learning - Part 8 - Serialization, Caching & Archiving - Flame 2021.2

6:29
 
Condividi
 

Manage episode 275593525 series 1272072
Contenuto fornito da Grant Kay. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Grant Kay o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In part 8 of the Machine Learning series, we examine a series of performance enhancements for Machine Learning and internally generated Motion Vectors in the Timeline in the Flame 2021.2 Update.

When using Machine Learning Models and generated Motion Vectors Maps, Flame will now cache the frames to disk to enhanced performance. This removes the need to recalculate the data analysis each time you visit the TimelineFX.

Since this type of caching is now part of the project, it can now be managed as well as archived with the Flame project!

There is also a new notification when Machine Learning models are initialising to let you know what Flame is doing.

And finally, as a new CentOS only feature, the machine learning models are serialised or written to your system disk in order to load faster when you need them. To be clear, this affects the loading times for the machine learning algorithm and not the computations when analysing the footage with a machine learning model.

  continue reading

447 episodi

Artwork
iconCondividi
 
Manage episode 275593525 series 1272072
Contenuto fornito da Grant Kay. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Grant Kay o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In part 8 of the Machine Learning series, we examine a series of performance enhancements for Machine Learning and internally generated Motion Vectors in the Timeline in the Flame 2021.2 Update.

When using Machine Learning Models and generated Motion Vectors Maps, Flame will now cache the frames to disk to enhanced performance. This removes the need to recalculate the data analysis each time you visit the TimelineFX.

Since this type of caching is now part of the project, it can now be managed as well as archived with the Flame project!

There is also a new notification when Machine Learning models are initialising to let you know what Flame is doing.

And finally, as a new CentOS only feature, the machine learning models are serialised or written to your system disk in order to load faster when you need them. To be clear, this affects the loading times for the machine learning algorithm and not the computations when analysing the footage with a machine learning model.

  continue reading

447 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci