Artwork

Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Ontology-Based Knowledge Engineering for Graphs (Chapter 13)

19:07
 
Condividi
 

Manage episode 523994505 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Ontologies are the semantic backbone that enable AI systems to reason precisely over complex domain knowledge, far beyond what vector embeddings alone can achieve. In this episode, we explore ontology-based knowledge engineering for graph-backed AI, featuring insights from Keith Bourne's Chapter 13 of *Unlocking Data with Generative AI and RAG*. Learn how ontologies empower multi-hop reasoning, improve explainability, and support scalable, production-grade AI systems.

In this episode:

- The fundamentals of ontologies, OWL, RDFS, and Protégé for building semantically rich knowledge graphs

- How ontology-based reasoning enhances retrieval-augmented generation (RAG) pipelines with precise domain constraints

- Practical tooling and workflows: from ontology authoring and validation to Neo4j graph integration

- Trade-offs between expressivity, performance, and maintainability in ontology engineering

- Real-world use cases across finance, healthcare, and compliance where ontologies enable trustworthy AI

- Open challenges and future directions in ontology automation, scalability, and hybrid AI systems

Key tools and technologies mentioned:

- Protégé (ontology authoring and reasoning)

- OWL 2 DL (Web Ontology Language for expressive domain modeling)

- RDFS and SKOS (vocabularies for annotation and lightweight semantics)

- Neo4j (graph database for knowledge graph storage and traversal)

- OWL reasoners (Pellet, HermiT, Fact++)

Timestamps:

00:00 – Introduction and episode overview

02:30 – Why ontologies matter now in AI and RAG

05:15 – Ontology basics: classes, properties, and logical constraints

08:00 – Tooling walkthrough: Protégé, OWL, Neo4j integration

11:45 – Performance and production considerations

14:30 – Real-world applications and case studies

17:00 – Technical trade-offs and best practices

19:15 – Open problems and future outlook

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne – Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq AI for tools and resources: https://memriq.ai

  continue reading

22 episodi

Artwork
iconCondividi
 
Manage episode 523994505 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Ontologies are the semantic backbone that enable AI systems to reason precisely over complex domain knowledge, far beyond what vector embeddings alone can achieve. In this episode, we explore ontology-based knowledge engineering for graph-backed AI, featuring insights from Keith Bourne's Chapter 13 of *Unlocking Data with Generative AI and RAG*. Learn how ontologies empower multi-hop reasoning, improve explainability, and support scalable, production-grade AI systems.

In this episode:

- The fundamentals of ontologies, OWL, RDFS, and Protégé for building semantically rich knowledge graphs

- How ontology-based reasoning enhances retrieval-augmented generation (RAG) pipelines with precise domain constraints

- Practical tooling and workflows: from ontology authoring and validation to Neo4j graph integration

- Trade-offs between expressivity, performance, and maintainability in ontology engineering

- Real-world use cases across finance, healthcare, and compliance where ontologies enable trustworthy AI

- Open challenges and future directions in ontology automation, scalability, and hybrid AI systems

Key tools and technologies mentioned:

- Protégé (ontology authoring and reasoning)

- OWL 2 DL (Web Ontology Language for expressive domain modeling)

- RDFS and SKOS (vocabularies for annotation and lightweight semantics)

- Neo4j (graph database for knowledge graph storage and traversal)

- OWL reasoners (Pellet, HermiT, Fact++)

Timestamps:

00:00 – Introduction and episode overview

02:30 – Why ontologies matter now in AI and RAG

05:15 – Ontology basics: classes, properties, and logical constraints

08:00 – Tooling walkthrough: Protégé, OWL, Neo4j integration

11:45 – Performance and production considerations

14:30 – Real-world applications and case studies

17:00 – Technical trade-offs and best practices

19:15 – Open problems and future outlook

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne – Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq AI for tools and resources: https://memriq.ai

  continue reading

22 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci