Artwork

Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

RAG-Based Agentic Memory: Code Perspective (Chapter 17)

16:47
 
Condividi
 

Manage episode 523994501 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock how Retrieval-Augmented Generation (RAG) enables AI agents to remember, learn, and personalize over time. In this episode, we explore Chapter 17 of Keith Bourne’s "Unlocking Data with Generative AI and RAG," focusing on implementing agentic memory with the CoALA framework. From episodic and semantic memory distinctions to real-world engineering trade-offs, this discussion is packed with practical insights for AI/ML engineers and infrastructure experts.

In this episode:

- Understand the difference between episodic and semantic memory and their roles in AI agents

- Explore how vector databases like ChromaDB power fast, scalable memory retrieval

- Dive into the architecture and code walkthrough using CoALA, LangChain, LangGraph, and OpenAI APIs

- Discuss engineering challenges including validation, latency, and system complexity

- Hear from author Keith Bourne on the foundational importance of agentic memory

- Review real-world applications and open problems shaping the future of memory-augmented AI

Key tools and technologies mentioned:

- CoALA framework

- LangChain & LangGraph

- ChromaDB vector database

- OpenAI API (embeddings and LLMs)

- python-dotenv

- Pydantic models

Timestamps:

0:00 - Introduction & Episode Overview

2:30 - The Concept of Agentic Memory: Episodic vs Semantic

6:00 - Vector Databases and Retrieval-Augmented Generation (RAG)

9:30 - Coding Agentic Memory: Frameworks and Workflow

13:00 - Engineering Trade-offs and Validation Challenges

16:00 - Real-World Applications and Use Cases

18:30 - Open Problems and Future Directions

20:00 - Closing Thoughts and Resources

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq AI at https://Memriq.ai for more AI engineering deep dives and resources

  continue reading

22 episodi

Artwork
iconCondividi
 
Manage episode 523994501 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock how Retrieval-Augmented Generation (RAG) enables AI agents to remember, learn, and personalize over time. In this episode, we explore Chapter 17 of Keith Bourne’s "Unlocking Data with Generative AI and RAG," focusing on implementing agentic memory with the CoALA framework. From episodic and semantic memory distinctions to real-world engineering trade-offs, this discussion is packed with practical insights for AI/ML engineers and infrastructure experts.

In this episode:

- Understand the difference between episodic and semantic memory and their roles in AI agents

- Explore how vector databases like ChromaDB power fast, scalable memory retrieval

- Dive into the architecture and code walkthrough using CoALA, LangChain, LangGraph, and OpenAI APIs

- Discuss engineering challenges including validation, latency, and system complexity

- Hear from author Keith Bourne on the foundational importance of agentic memory

- Review real-world applications and open problems shaping the future of memory-augmented AI

Key tools and technologies mentioned:

- CoALA framework

- LangChain & LangGraph

- ChromaDB vector database

- OpenAI API (embeddings and LLMs)

- python-dotenv

- Pydantic models

Timestamps:

0:00 - Introduction & Episode Overview

2:30 - The Concept of Agentic Memory: Episodic vs Semantic

6:00 - Vector Databases and Retrieval-Augmented Generation (RAG)

9:30 - Coding Agentic Memory: Frameworks and Workflow

13:00 - Engineering Trade-offs and Validation Challenges

16:00 - Real-World Applications and Use Cases

18:30 - Open Problems and Future Directions

20:00 - Closing Thoughts and Resources

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq AI at https://Memriq.ai for more AI engineering deep dives and resources

  continue reading

22 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci