Artwork

Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

RAG Components Unpacked (Chapter 4)

16:23
 
Condividi
 

Manage episode 523831803 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock the engineering essentials behind Retrieval-Augmented Generation (RAG) in this episode of Memriq Inference Digest — Engineering Edition. We break down the core components of RAG pipelines as detailed in Chapter 4 of Keith Bourne’s book, exploring how offline indexing, real-time retrieval, and generation come together to solve the LLM knowledge cutoff problem.

In this episode:

- Explore the three-stage RAG pipeline: offline embedding and indexing, real-time retrieval, and LLM-augmented generation

- Dive into hands-on tools like LangChain, LangSmith, ChromaDB, OpenAI API, WebBaseLoader, and BeautifulSoup4

- Understand chunking strategies, embedding consistency, and pipeline orchestration with LangChain’s mini-chains

- Discuss trade-offs between direct LLM querying, offline indexing, and real-time indexing

- Hear insider insights from Keith Bourne on engineering best practices and common pitfalls

- Review real-world RAG applications in legal, healthcare, and finance domains

Key tools & technologies:

LangChain, LangSmith, ChromaDB, OpenAI API, WebBaseLoader, BeautifulSoup4, RecursiveCharacterTextSplitter, StrOutputParser

Timestamps:

00:00 Intro & overview of RAG components

03:15 The knowledge cutoff problem & RAG’s architecture

06:40 Why RAG matters now: cost and tooling advances

09:10 Core RAG pipeline explained: indexing, retrieval, generation

12:00 Tool comparisons & architectural trade-offs

14:30 Under the hood: code walkthrough and chunking

17:00 Real-world use cases and domain-specific insights

19:00 Final thoughts & resources

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne — Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq.ai for more AI engineering guides, research breakdowns, and tools

Thanks for listening to Memriq Inference Digest — Engineering Edition. Stay tuned for more deep dives into AI engineering topics!

  continue reading

22 episodi

Artwork
iconCondividi
 
Manage episode 523831803 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock the engineering essentials behind Retrieval-Augmented Generation (RAG) in this episode of Memriq Inference Digest — Engineering Edition. We break down the core components of RAG pipelines as detailed in Chapter 4 of Keith Bourne’s book, exploring how offline indexing, real-time retrieval, and generation come together to solve the LLM knowledge cutoff problem.

In this episode:

- Explore the three-stage RAG pipeline: offline embedding and indexing, real-time retrieval, and LLM-augmented generation

- Dive into hands-on tools like LangChain, LangSmith, ChromaDB, OpenAI API, WebBaseLoader, and BeautifulSoup4

- Understand chunking strategies, embedding consistency, and pipeline orchestration with LangChain’s mini-chains

- Discuss trade-offs between direct LLM querying, offline indexing, and real-time indexing

- Hear insider insights from Keith Bourne on engineering best practices and common pitfalls

- Review real-world RAG applications in legal, healthcare, and finance domains

Key tools & technologies:

LangChain, LangSmith, ChromaDB, OpenAI API, WebBaseLoader, BeautifulSoup4, RecursiveCharacterTextSplitter, StrOutputParser

Timestamps:

00:00 Intro & overview of RAG components

03:15 The knowledge cutoff problem & RAG’s architecture

06:40 Why RAG matters now: cost and tooling advances

09:10 Core RAG pipeline explained: indexing, retrieval, generation

12:00 Tool comparisons & architectural trade-offs

14:30 Under the hood: code walkthrough and chunking

17:00 Real-world use cases and domain-specific insights

19:00 Final thoughts & resources

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne — Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq.ai for more AI engineering guides, research breakdowns, and tools

Thanks for listening to Memriq Inference Digest — Engineering Edition. Stay tuned for more deep dives into AI engineering topics!

  continue reading

22 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci