Artwork

Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Vectors & Vector Stores in RAG (Chapter 7)

19:44
 
Condividi
 

Manage episode 523867881 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock the core infrastructure powering retrieval-augmented generation (RAG) systems in this technical deep dive. We explore how vector embeddings and vector stores work together to enable fast, scalable, and semantically rich retrieval for LLMs, drawing insights directly from Chapter 7 of Keith Bourne’s book.

In this episode:

- Understand the role of high-dimensional vectors and vector stores in powering RAG

- Compare embedding models like OpenAIEmbeddings, BERT, and Doc2Vec

- Explore vector store technologies including Chroma, Milvus, Pinecone, and pgvector

- Deep dive into indexing algorithms like HNSW and adaptive retrieval techniques such as Matryoshka embeddings

- Discuss architectural trade-offs for production-ready RAG systems

- Hear real-world applications and operational challenges from embedding compatibility to scaling

Key tools & technologies mentioned:

OpenAIEmbeddings, BERT, Doc2Vec, Chroma, Milvus, Pinecone, pgvector, LangChain, HNSW, Matryoshka embeddings

Timestamps:

00:00 - Introduction to vectors and vector stores in RAG

02:15 - Why vectors are the backbone of retrieval-augmented generation

05:40 - Embedding models: trade-offs and use cases

09:10 - Vector stores and indexing: Chroma, Milvus, Pinecone, pgvector

13:00 - Under the hood: indexing algorithms and adaptive retrieval

16:20 - Real-world deployments and architectural trade-offs

18:40 - Open challenges and best practices

20:30 - Final thoughts and book recommendation

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq.ai for more AI practitioner tools, resources, and deep dives

  continue reading

22 episodi

Artwork
iconCondividi
 
Manage episode 523867881 series 3705596
Contenuto fornito da Keith Bourne. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Keith Bourne o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Unlock the core infrastructure powering retrieval-augmented generation (RAG) systems in this technical deep dive. We explore how vector embeddings and vector stores work together to enable fast, scalable, and semantically rich retrieval for LLMs, drawing insights directly from Chapter 7 of Keith Bourne’s book.

In this episode:

- Understand the role of high-dimensional vectors and vector stores in powering RAG

- Compare embedding models like OpenAIEmbeddings, BERT, and Doc2Vec

- Explore vector store technologies including Chroma, Milvus, Pinecone, and pgvector

- Deep dive into indexing algorithms like HNSW and adaptive retrieval techniques such as Matryoshka embeddings

- Discuss architectural trade-offs for production-ready RAG systems

- Hear real-world applications and operational challenges from embedding compatibility to scaling

Key tools & technologies mentioned:

OpenAIEmbeddings, BERT, Doc2Vec, Chroma, Milvus, Pinecone, pgvector, LangChain, HNSW, Matryoshka embeddings

Timestamps:

00:00 - Introduction to vectors and vector stores in RAG

02:15 - Why vectors are the backbone of retrieval-augmented generation

05:40 - Embedding models: trade-offs and use cases

09:10 - Vector stores and indexing: Chroma, Milvus, Pinecone, pgvector

13:00 - Under the hood: indexing algorithms and adaptive retrieval

16:20 - Real-world deployments and architectural trade-offs

18:40 - Open challenges and best practices

20:30 - Final thoughts and book recommendation

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq.ai for more AI practitioner tools, resources, and deep dives

  continue reading

22 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci