Artwork

Contenuto fornito da MLSecOps.com. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MLSecOps.com o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Practical Offensive and Adversarial ML for Red Teams

35:24
 
Condividi
 

Manage episode 425466822 series 3461851
Contenuto fornito da MLSecOps.com. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MLSecOps.com o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Send us a text

Next on the MLSecOps Podcast, we have the honor of highlighting one of our MLSecOps Community members and Dropbox™ Red Teamers, Adrian Wood.
Adrian joined Protect AI threat researchers, Dan McInerney and Marcello Salvati, in the studio to share an array of insights, including what inspired him to create the Offensive ML (aka OffSec ML) Playbook, and diving into categories like adversarial machine learning (ML), offensive/defensive ML, and supply chain attacks.

The group also discusses dual uses for "traditional" ML and LLMs in the realm of security, the rise of agentic LLMs, and the potential for crown jewel data leakage via model malware (i.e. highly valuable and sensitive data being leaked out of an organization due to malicious software embedded within machine learning models or AI systems).

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 episodi

Artwork
iconCondividi
 
Manage episode 425466822 series 3461851
Contenuto fornito da MLSecOps.com. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da MLSecOps.com o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Send us a text

Next on the MLSecOps Podcast, we have the honor of highlighting one of our MLSecOps Community members and Dropbox™ Red Teamers, Adrian Wood.
Adrian joined Protect AI threat researchers, Dan McInerney and Marcello Salvati, in the studio to share an array of insights, including what inspired him to create the Offensive ML (aka OffSec ML) Playbook, and diving into categories like adversarial machine learning (ML), offensive/defensive ML, and supply chain attacks.

The group also discusses dual uses for "traditional" ML and LLMs in the realm of security, the rise of agentic LLMs, and the potential for crown jewel data leakage via model malware (i.e. highly valuable and sensitive data being leaked out of an organization due to malicious software embedded within machine learning models or AI systems).

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci