Artwork

Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Speculative Decoding and Efficient LLM Inference with Chris Lott - #717

1:16:30
 
Condividi
 

Manage episode 464833852 series 2355587
Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Today, we're joined by Chris Lott, senior director of engineering at Qualcomm AI Research to discuss accelerating large language model inference. We explore the challenges presented by the LLM encoding and decoding (aka generation) and how these interact with various hardware constraints such as FLOPS, memory footprint and memory bandwidth to limit key inference metrics such as time-to-first-token, tokens per second, and tokens per joule. We then dig into a variety of techniques that can be used to accelerate inference such as KV compression, quantization, pruning, speculative decoding, and leveraging small language models (SLMs). We also discuss future directions for enabling on-device agentic experiences such as parallel generation and software tools like Qualcomm AI Orchestrator.

The complete show notes for this episode can be found at https://twimlai.com/go/717.

  continue reading

778 episodi

Artwork
iconCondividi
 
Manage episode 464833852 series 2355587
Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Today, we're joined by Chris Lott, senior director of engineering at Qualcomm AI Research to discuss accelerating large language model inference. We explore the challenges presented by the LLM encoding and decoding (aka generation) and how these interact with various hardware constraints such as FLOPS, memory footprint and memory bandwidth to limit key inference metrics such as time-to-first-token, tokens per second, and tokens per joule. We then dig into a variety of techniques that can be used to accelerate inference such as KV compression, quantization, pruning, speculative decoding, and leveraging small language models (SLMs). We also discuss future directions for enabling on-device agentic experiences such as parallel generation and software tools like Qualcomm AI Orchestrator.

The complete show notes for this episode can be found at https://twimlai.com/go/717.

  continue reading

778 episodi

Alle afleveringen

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci