Artwork

Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Zero-Shot Auto-Labeling: The End of Annotation for Computer Vision with Jason Corso - #735

56:45
 
Condividi
 

Manage episode 487957100 series 2355587
Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Today, we're joined by Jason Corso, co-founder of Voxel51 and professor at the University of Michigan, to explore automated labeling in computer vision. Jason introduces FiftyOne, an open-source platform for visualizing datasets, analyzing models, and improving data quality. We focus on Voxel51’s recent research report, “Zero-shot auto-labeling rivals human performance,” which demonstrates how zero-shot auto-labeling with foundation models can yield to significant cost and time savings compared to traditional human annotation. Jason explains how auto-labels, despite being "noisier" at lower confidence thresholds, can lead to better downstream model performance. We also cover Voxel51's "verified auto-labeling" approach, which utilizes a "stoplight" QA workflow (green, yellow, red light) to minimize human review. Finally, we discuss the challenges of handling decision boundary uncertainty and out-of-domain classes, the differences between synthetic data generation in vision and language domains, and the potential of agentic labeling.

The complete show notes for this episode can be found at https://twimlai.com/go/735.

  continue reading

778 episodi

Artwork
iconCondividi
 
Manage episode 487957100 series 2355587
Contenuto fornito da TWIML and Sam Charrington. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da TWIML and Sam Charrington o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Today, we're joined by Jason Corso, co-founder of Voxel51 and professor at the University of Michigan, to explore automated labeling in computer vision. Jason introduces FiftyOne, an open-source platform for visualizing datasets, analyzing models, and improving data quality. We focus on Voxel51’s recent research report, “Zero-shot auto-labeling rivals human performance,” which demonstrates how zero-shot auto-labeling with foundation models can yield to significant cost and time savings compared to traditional human annotation. Jason explains how auto-labels, despite being "noisier" at lower confidence thresholds, can lead to better downstream model performance. We also cover Voxel51's "verified auto-labeling" approach, which utilizes a "stoplight" QA workflow (green, yellow, red light) to minimize human review. Finally, we discuss the challenges of handling decision boundary uncertainty and out-of-domain classes, the differences between synthetic data generation in vision and language domains, and the potential of agentic labeling.

The complete show notes for this episode can be found at https://twimlai.com/go/735.

  continue reading

778 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci