Artwork

Contenuto fornito da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Building trust in AI with Carol Smith

35:26
 
Condividi
 

Manage episode 401217351 series 3448540
Contenuto fornito da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

S02E11 (#321). How do we know when to trust a system? Carol Smith leads the Trust Lab team at Carnagie Mellon Universty, where they conduct research into making trustworthy, human centered, and responsible AI systems. Our conversation highlights the importance of guardrails and ethical considerations in AI development, as well as to ask the right questions and to be critical of the work we are doing – in order to make the best systems we can for the people who are using them or who will be affected by them.

“If the system is providing the right kind of evidence of how it’s making decisions, how it’s making recommendations, if it is a situation where the people understand the capabilities of that system in that particular context, and also know what the edges are – it can’t handle this type of situation, or it will perform poorly in this type of situation – then they can begin to build what is called calibrated trust. “

– Carol Smith

(Listening time: 35 minutes, transcript)

References:

This conversation was recorded at UXLx 2023.

The post Building trust in AI with Carol Smith appeared first on UX Podcast.

  continue reading

90 episodi

Artwork
iconCondividi
 
Manage episode 401217351 series 3448540
Contenuto fornito da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da James Royal-Lawson and Per Axbom, James Royal-Lawson, and Per Axbom o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

S02E11 (#321). How do we know when to trust a system? Carol Smith leads the Trust Lab team at Carnagie Mellon Universty, where they conduct research into making trustworthy, human centered, and responsible AI systems. Our conversation highlights the importance of guardrails and ethical considerations in AI development, as well as to ask the right questions and to be critical of the work we are doing – in order to make the best systems we can for the people who are using them or who will be affected by them.

“If the system is providing the right kind of evidence of how it’s making decisions, how it’s making recommendations, if it is a situation where the people understand the capabilities of that system in that particular context, and also know what the edges are – it can’t handle this type of situation, or it will perform poorly in this type of situation – then they can begin to build what is called calibrated trust. “

– Carol Smith

(Listening time: 35 minutes, transcript)

References:

This conversation was recorded at UXLx 2023.

The post Building trust in AI with Carol Smith appeared first on UX Podcast.

  continue reading

90 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida