Artwork

Contenuto fornito da Yannic Kilcher. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Yannic Kilcher o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

More Is Different for AI - Scaling Up, Emergence, and Paperclip Maximizers (w/ Jacob Steinhardt)

1:06:36
 
Condividi
 

Manage episode 341262937 series 2974171
Contenuto fornito da Yannic Kilcher. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Yannic Kilcher o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

#ai #interview #research

Jacob Steinhardt believes that future AI systems will be qualitatively different than the ones we know currently. We talk about how emergence happens when scaling up, what implications that has on AI Safety, and why thought experiments like the Paperclip Maximizer might be more useful than most people think.

OUTLINE:

0:00 Introduction

1:10 Start of Interview

2:10 Blog posts series

3:56 More Is Different for AI (Blog Post)

7:40 Do you think this emergence is mainly a property from the interaction of things?

9:17 How does phase transition or scaling-up play into AI and Machine Learning?

12:10 GPT-3 as an example of qualitative difference in scaling up

14:08 GPT-3 as an emergent phenomenon in context learning

15:58 Brief introduction of different viewpoints on the future of AI and its alignment

18:51 How does the phenomenon of emergence play into this game between the Engineering and the Philosophy viewpoint?

22:41 Paperclip Maximizer on AI safety and alignment

31:37 Thought Experiments

37:34 Imitative Deception

39:30 TruthfulQA: Measuring How Models Mimic Human Falsehoods (Paper)

42:24 ML Systems Will Have Weird Failure Models (Blog Post)

51:10 Is there any work to get a system to be deceptive?

54:37 Empirical Findings Generalize Surprisingly Far (Blog Post)

1:00:18 What would you recommend to guarantee better AI alignment or safety?

1:05:13 Remarks

References:

https://bounded-regret.ghost.io/more-is-different-for-ai/

https://docs.google.com/document/d/1FbTuRvC4TFWzGYerTKpBU7FJlyvjeOvVYF2uYNFSlOc/edit#heading=h.n1wk9bxo847o

Links:

TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick

YouTube: https://www.youtube.com/c/yannickilcher

Twitter: https://twitter.com/ykilcher

Discord: https://ykilcher.com/discord

BitChute: https://www.bitchute.com/channel/yannic-kilcher

LinkedIn: https://www.linkedin.com/in/ykilcher

BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):

SubscribeStar: https://www.subscribestar.com/yannickilcher

Patreon: https://www.patreon.com/yannickilcher

Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq

Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2

Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m

Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

  continue reading

177 episodi

Artwork
iconCondividi
 
Manage episode 341262937 series 2974171
Contenuto fornito da Yannic Kilcher. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Yannic Kilcher o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

#ai #interview #research

Jacob Steinhardt believes that future AI systems will be qualitatively different than the ones we know currently. We talk about how emergence happens when scaling up, what implications that has on AI Safety, and why thought experiments like the Paperclip Maximizer might be more useful than most people think.

OUTLINE:

0:00 Introduction

1:10 Start of Interview

2:10 Blog posts series

3:56 More Is Different for AI (Blog Post)

7:40 Do you think this emergence is mainly a property from the interaction of things?

9:17 How does phase transition or scaling-up play into AI and Machine Learning?

12:10 GPT-3 as an example of qualitative difference in scaling up

14:08 GPT-3 as an emergent phenomenon in context learning

15:58 Brief introduction of different viewpoints on the future of AI and its alignment

18:51 How does the phenomenon of emergence play into this game between the Engineering and the Philosophy viewpoint?

22:41 Paperclip Maximizer on AI safety and alignment

31:37 Thought Experiments

37:34 Imitative Deception

39:30 TruthfulQA: Measuring How Models Mimic Human Falsehoods (Paper)

42:24 ML Systems Will Have Weird Failure Models (Blog Post)

51:10 Is there any work to get a system to be deceptive?

54:37 Empirical Findings Generalize Surprisingly Far (Blog Post)

1:00:18 What would you recommend to guarantee better AI alignment or safety?

1:05:13 Remarks

References:

https://bounded-regret.ghost.io/more-is-different-for-ai/

https://docs.google.com/document/d/1FbTuRvC4TFWzGYerTKpBU7FJlyvjeOvVYF2uYNFSlOc/edit#heading=h.n1wk9bxo847o

Links:

TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick

YouTube: https://www.youtube.com/c/yannickilcher

Twitter: https://twitter.com/ykilcher

Discord: https://ykilcher.com/discord

BitChute: https://www.bitchute.com/channel/yannic-kilcher

LinkedIn: https://www.linkedin.com/in/ykilcher

BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):

SubscribeStar: https://www.subscribestar.com/yannickilcher

Patreon: https://www.patreon.com/yannickilcher

Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq

Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2

Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m

Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

  continue reading

177 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci