Artwork

Contenuto fornito da The Radcliffe Cardiology Podcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Radcliffe Cardiology Podcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Implementing AI Algorithms in Emergency Departments: RAPIDxAI with Dr Derek Chew

18:02
 
Condividi
 

Manage episode 442788143 series 2990303
Contenuto fornito da The Radcliffe Cardiology Podcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Radcliffe Cardiology Podcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Host, Dr Dipti Itchhaporia (Hoag Heart and Vascular Institute, Newport Beach, CA, US) is joined by PI, Dr Derek Chew (Monash Heart and Victorian Heart Institute, AU) to discuss the findings from the RAPIDxAI trial, which aims to improve the assessment of suspected cardiac chest pain in emergency departments (ED) using a machine-learning algorithm that will interpret high-sensitivity troponin test results, assisting the diagnosis of myocardial infarction (MI) and other myocardial injuries. Conducted across 12 hospitals with 9600 patients, RAPIDxAI compares AI-supported decision-making to standard of care. Investigators found that the availability of AI-based decision making tools guiding diagnostic and prognostic evaluation of high-sensitivity troponin T did not impact clinical care to improve cardiovascular outcomes. There was no increased risk using the algorithms observed in the trial, demonstrating the safety of the algorithm. Dr Itchhaporia and Dr Chew discuss the trust levels of cardiologists in implementing AI algorithms into clinical practice, and cost-effective methods of validating AI, as well as the lessons learnt from the trial. If you have any questions or suggestions for topics to cover on the Radcliffe Podcast, please email managingeditor@ecrjournal.com.
  continue reading

42 episodi

Artwork
iconCondividi
 
Manage episode 442788143 series 2990303
Contenuto fornito da The Radcliffe Cardiology Podcast. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Radcliffe Cardiology Podcast o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Host, Dr Dipti Itchhaporia (Hoag Heart and Vascular Institute, Newport Beach, CA, US) is joined by PI, Dr Derek Chew (Monash Heart and Victorian Heart Institute, AU) to discuss the findings from the RAPIDxAI trial, which aims to improve the assessment of suspected cardiac chest pain in emergency departments (ED) using a machine-learning algorithm that will interpret high-sensitivity troponin test results, assisting the diagnosis of myocardial infarction (MI) and other myocardial injuries. Conducted across 12 hospitals with 9600 patients, RAPIDxAI compares AI-supported decision-making to standard of care. Investigators found that the availability of AI-based decision making tools guiding diagnostic and prognostic evaluation of high-sensitivity troponin T did not impact clinical care to improve cardiovascular outcomes. There was no increased risk using the algorithms observed in the trial, demonstrating the safety of the algorithm. Dr Itchhaporia and Dr Chew discuss the trust levels of cardiologists in implementing AI algorithms into clinical practice, and cost-effective methods of validating AI, as well as the lessons learnt from the trial. If you have any questions or suggestions for topics to cover on the Radcliffe Podcast, please email managingeditor@ecrjournal.com.
  continue reading

42 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida