Artwork

Contenuto fornito da Databricks. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Databricks o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

45:22
 
Condividi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 30, 2025 14:27 (1M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 467662617 series 2814833
Contenuto fornito da Databricks. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Databricks o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.
Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

  continue reading

44 episodi

Artwork
iconCondividi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 30, 2025 14:27 (1M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 467662617 series 2814833
Contenuto fornito da Databricks. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Databricks o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.
Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

  continue reading

44 episodi

Alle episoder

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci