Artwork

Contenuto fornito da Kyle Polich. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Kyle Polich o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Fraud Detection with Graphs

37:23
 
Condividi
 

Manage episode 462374842 series 2328414
Contenuto fornito da Kyle Polich. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Kyle Polich o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

592 episodi

Artwork

Fraud Detection with Graphs

Data Skeptic

790 subscribers

published

iconCondividi
 
Manage episode 462374842 series 2328414
Contenuto fornito da Kyle Polich. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Kyle Polich o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

592 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci