Artwork

Contenuto fornito da ACIF / Chase Parsons. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da ACIF / Chase Parsons o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

#S3E7: Making Machine Learning Models Clinically Useful with Dr. Karandeep Singh

56:08
 
Condividi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 15:48 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 308354282 series 1395779
Contenuto fornito da ACIF / Chase Parsons. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da ACIF / Chase Parsons o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
In this episode, podcast co-hosts Mackenzie Hofford (2nd year CI fellow, Washington University in St. Louis), Ed Kalpas (2nd year CI fellow, HonorHealth), and Jayson Marwaha (informatics postdoc, Harvard Medical School) chat with Dr. Karandeep Singh about responsible development, implementation, and evaluation of machine learning models in the context of his recent work examining the Epic Sepsis Model. Dr. Singh is an Assistant Professor of Learning Health Sciences, Internal Medicine, Urology, and Information at the University of Michigan, and is a widely-recognized leader in bringing machine learning models to the bedside. Links to Dr. Singh's recent work: - JAMA Internal Medicine paper on the Epic Sepsis Model: https://bit.ly/3pgP6Yd - R/Medicine Conference Keynote Speech (Aug 2021): https://youtu.be/l71wLKUr26E
  continue reading

26 episodi

Artwork
iconCondividi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 15:48 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 308354282 series 1395779
Contenuto fornito da ACIF / Chase Parsons. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da ACIF / Chase Parsons o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
In this episode, podcast co-hosts Mackenzie Hofford (2nd year CI fellow, Washington University in St. Louis), Ed Kalpas (2nd year CI fellow, HonorHealth), and Jayson Marwaha (informatics postdoc, Harvard Medical School) chat with Dr. Karandeep Singh about responsible development, implementation, and evaluation of machine learning models in the context of his recent work examining the Epic Sepsis Model. Dr. Singh is an Assistant Professor of Learning Health Sciences, Internal Medicine, Urology, and Information at the University of Michigan, and is a widely-recognized leader in bringing machine learning models to the bedside. Links to Dr. Singh's recent work: - JAMA Internal Medicine paper on the Epic Sepsis Model: https://bit.ly/3pgP6Yd - R/Medicine Conference Keynote Speech (Aug 2021): https://youtu.be/l71wLKUr26E
  continue reading

26 episodi

Wszystkie odcinki

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida