Artwork

Contenuto fornito da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

The Lottery Ticket Hypothesis

19:45
 
Condividi
 

Manage episode 254315967 series 74115
Contenuto fornito da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

293 episodi

Artwork

The Lottery Ticket Hypothesis

Linear Digressions

3,118 subscribers

published

iconCondividi
 
Manage episode 254315967 series 74115
Contenuto fornito da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

293 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci