Artwork

Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Concluding Our Characterizing Biases in Cable News Study

14:27
 
Condividi
 

Manage episode 419689486 series 3474160
Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/concluding-our-characterizing-biases-in-cable-news-study.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #media-study, #bias-in-the-news, #us-cable-news-bias, #is-the-news-biased, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data in the form of transcripts. Our focus was on analyzing gatekeeping bias, which pertains to the topics discussed on cable news programs, and writing style bias, which refers to the language used to discuss these topics.

  continue reading

166 episodi

Artwork
iconCondividi
 
Manage episode 419689486 series 3474160
Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/concluding-our-characterizing-biases-in-cable-news-study.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #media-study, #bias-in-the-news, #us-cable-news-bias, #is-the-news-biased, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data in the form of transcripts. Our focus was on analyzing gatekeeping bias, which pertains to the topics discussed on cable news programs, and writing style bias, which refers to the language used to discuss these topics.

  continue reading

166 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida