Artwork

Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Machine learning and analytics for time series data

40:31
 
Condividi
 

Manage episode 248276627 series 61203
Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.

We had a great conversation spanning many topics, including:

  • Why businesses should care about anomaly detection and forecasting; specifically, we delve into examples outside of IT Operations & Monitoring.
  • (Specialized) techniques and tools for automating some of the relevant tasks, including signal processing, statistical methods, and machine learning.
  • What are some of the key features of an anomaly detection or forecasting system.
  • What lies ahead for large-scale systems for time series analysis.

Related resources:

  continue reading

168 episodi

Artwork
iconCondividi
 
Manage episode 248276627 series 61203
Contenuto fornito da O'Reilly Media. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da O'Reilly Media o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.

We had a great conversation spanning many topics, including:

  • Why businesses should care about anomaly detection and forecasting; specifically, we delve into examples outside of IT Operations & Monitoring.
  • (Specialized) techniques and tools for automating some of the relevant tasks, including signal processing, statistical methods, and machine learning.
  • What are some of the key features of an anomaly detection or forecasting system.
  • What lies ahead for large-scale systems for time series analysis.

Related resources:

  continue reading

168 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci