Artwork

Contenuto fornito da Ulrik B. Carlsson and Ulrik Carlsson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ulrik B. Carlsson and Ulrik Carlsson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Power BI & More: Is your Power Platform data ready for Data Science/Machine Learning?

32:51
 
Condividi
 

Manage episode 248013320 series 2582622
Contenuto fornito da Ulrik B. Carlsson and Ulrik Carlsson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ulrik B. Carlsson and Ulrik Carlsson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode (brought to you by mscrm-addons.com), Matt Lamb, Data Science and Commercial Analytics Lead at eLogic, rejoins the podcast to discuss what we need from our Dynamics 365 implementation when stepping into Machine Learning and AI. What do we need from our Dynamics 365 data in terms quantity and completeness to get effective results? What are the ways to deal with incomplete and what consequences does it have on your Machine Learning results when you make even simple updates to your business processes. In order to create a record set to use as a base for Machine Learning, you may not need as many records as you think, but need to strike the right balance of quantity and quality.

In this episode we discuss:

o How many records are really needed for effective machine learning?

o What structure and maturity level of data is needed?

o Supervised vs. Unsupervised Learning

o How many people does Matt’s dog need to meet?

o What happens with your algorithms when you make changes to your business process?

o Tips to make your data scientist happy

Got questions or suggestions for future episode? Email voice@crm.audio.

This episode is a production of Dynamic Podcasts LLC.

  continue reading

23 episodi

Artwork
iconCondividi
 
Manage episode 248013320 series 2582622
Contenuto fornito da Ulrik B. Carlsson and Ulrik Carlsson. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Ulrik B. Carlsson and Ulrik Carlsson o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In this episode (brought to you by mscrm-addons.com), Matt Lamb, Data Science and Commercial Analytics Lead at eLogic, rejoins the podcast to discuss what we need from our Dynamics 365 implementation when stepping into Machine Learning and AI. What do we need from our Dynamics 365 data in terms quantity and completeness to get effective results? What are the ways to deal with incomplete and what consequences does it have on your Machine Learning results when you make even simple updates to your business processes. In order to create a record set to use as a base for Machine Learning, you may not need as many records as you think, but need to strike the right balance of quantity and quality.

In this episode we discuss:

o How many records are really needed for effective machine learning?

o What structure and maturity level of data is needed?

o Supervised vs. Unsupervised Learning

o How many people does Matt’s dog need to meet?

o What happens with your algorithms when you make changes to your business process?

o Tips to make your data scientist happy

Got questions or suggestions for future episode? Email voice@crm.audio.

This episode is a production of Dynamic Podcasts LLC.

  continue reading

23 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci