Artwork

Contenuto fornito da Deeper Insights. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Deeper Insights o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

19: Unlocking Explainable Machine Learning in Manufacturing

26:24
 
Condividi
 

Manage episode 435543758 series 3548032
Contenuto fornito da Deeper Insights. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Deeper Insights o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
This month’s episode of the AI Paper Club Podcast welcomes Dr. Diogo Ribeiro, a senior machine learning engineer at Deeper Insights. Diogo presents a research paper he co-developed, focusing on the industrial application of AI, titled "Isolation Forest and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection." The podcast explores the intricacies of combining traditional machine learning models with deep learning techniques to address a critical problem in industrial manufacturing: detecting anomalies in screw tightening processes.
The conversation highlights the importance of explainability in AI, particularly in industrial settings where safety and cost are paramount. The episode also touches on the broader implications of machine learning in AI, contrasting it with the current excitement surrounding generative AI models.
We also extend a special thank you to Diogo and his team of researchers for developing this month's paper. If you are interested in reading the paper yourself, please visit this link: https://www.mdpi.com/2073-431X/11/4/54.
For more information on all things artificial intelligence, machine learning, and engineering for your business, please visit www.deeperinsights.com or reach out to us at thepaperclub@deeperinsights.com.
  continue reading

21 episodi

Artwork
iconCondividi
 
Manage episode 435543758 series 3548032
Contenuto fornito da Deeper Insights. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Deeper Insights o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
This month’s episode of the AI Paper Club Podcast welcomes Dr. Diogo Ribeiro, a senior machine learning engineer at Deeper Insights. Diogo presents a research paper he co-developed, focusing on the industrial application of AI, titled "Isolation Forest and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection." The podcast explores the intricacies of combining traditional machine learning models with deep learning techniques to address a critical problem in industrial manufacturing: detecting anomalies in screw tightening processes.
The conversation highlights the importance of explainability in AI, particularly in industrial settings where safety and cost are paramount. The episode also touches on the broader implications of machine learning in AI, contrasting it with the current excitement surrounding generative AI models.
We also extend a special thank you to Diogo and his team of researchers for developing this month's paper. If you are interested in reading the paper yourself, please visit this link: https://www.mdpi.com/2073-431X/11/4/54.
For more information on all things artificial intelligence, machine learning, and engineering for your business, please visit www.deeperinsights.com or reach out to us at thepaperclub@deeperinsights.com.
  continue reading

21 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida