Artwork

Contenuto fornito da The Binary Breakdown. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Binary Breakdown o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Monolith: A Real-Time Recommendation System

20:25
 
Condividi
 

Manage episode 487366635 series 3670304
Contenuto fornito da The Binary Breakdown. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Binary Breakdown o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This research paper details Monolith, a real-time recommendation system developed by Bytedance. Monolith addresses challenges in building scalable recommendation systems, such as sparse and dynamic data, and concept drift, by employing a collisionless embedding table and an online training architecture. Key innovations include a Cuckoo HashMap for efficient sparse parameter representation, incorporating features like expirable embeddings and frequency filtering, and a system for real-time parameter synchronization between training and serving. The authors present experimental results demonstrating Monolith's superior performance compared to systems using traditional hash tables and batch training, showcasing the benefits of its design choices in terms of model accuracy and efficiency. Finally, the paper compares Monolith to existing solutions, highlighting its unique advantages for industrial-scale applications.

https://arxiv.org/pdf/2209.07663

  continue reading

44 episodi

Artwork
iconCondividi
 
Manage episode 487366635 series 3670304
Contenuto fornito da The Binary Breakdown. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The Binary Breakdown o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This research paper details Monolith, a real-time recommendation system developed by Bytedance. Monolith addresses challenges in building scalable recommendation systems, such as sparse and dynamic data, and concept drift, by employing a collisionless embedding table and an online training architecture. Key innovations include a Cuckoo HashMap for efficient sparse parameter representation, incorporating features like expirable embeddings and frequency filtering, and a system for real-time parameter synchronization between training and serving. The authors present experimental results demonstrating Monolith's superior performance compared to systems using traditional hash tables and batch training, showcasing the benefits of its design choices in terms of model accuracy and efficiency. Finally, the paper compares Monolith to existing solutions, highlighting its unique advantages for industrial-scale applications.

https://arxiv.org/pdf/2209.07663

  continue reading

44 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci