Artwork

Contenuto fornito da Charles M Wood. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Charles M Wood o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Navigating Common Pitfalls in Data Science: Lessons from Pierpaolo Hipolito - ML 183

55:08
 
Condividi
 

Manage episode 462892161 series 2977446
Contenuto fornito da Charles M Wood. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Charles M Wood o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

209 episodi

Artwork
iconCondividi
 
Manage episode 462892161 series 2977446
Contenuto fornito da Charles M Wood. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Charles M Wood o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

209 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci