Artwork

Contenuto fornito da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Geometric Parametrization of Sedimentary Basins in Southern California for Site Response Analysis and Modelling

1:00:00
 
Condividi
 

Manage episode 436691733 series 1399341
Contenuto fornito da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Rashid Shams, University of Southern California

Site response in sedimentary basins is partially governed by mechanisms associated with three-dimensional features. This includes the generation of propagating surface waves due to trapped and refracted seismic waves, focusing of seismic energy due to basin shape and size, and resonance of the entire basin sediment structure. These mechanisms are referred to as basin effects and they lead to a significant increase in the amplitude and duration of the observed ground motions from earthquake events. Currently, ground motion models (GMMs) incorporate basin effects using the time-averaged shear-wave velocity in the upper 30 m (V_S30), and the isosurface depths (depth to a particular shear wave velocity horizon, z_x). This approach captures site response features associated with the basin but uses parameters that are one-dimensional in nature and therefore are limited in their description of the lateral and other three-dimensional (3D) contributing effects. This work explores geometric features as predictive parameters in the development of region-specific models to improve the characterization of site response in sedimentary basins. In this work we constrained basin shape using depth to sedimentary basement (depth to a particular shear wave velocity horizon i.e., z_1.5 and z_2.3) and depth to crystalline basement (z_c,b) which are derived and validated using systematic exploration of geological cross sections and Community Velocity Model (CVM) profiles over Los Angeles Basin (LAB). Finally geometric parameters such as includes Standard deviation of zcb, Standard deviation of Absolute difference between z_1.5 and z_cb, distance from basin margin, and Spatial Area of Influence based on V_S30 are computed based on finalized shape. Residual analysis is employed to access derived geometric parameters for their ability to reduce bias and uncertainty in basin site response analysis.

  continue reading

20 episodi

Artwork
iconCondividi
 
Manage episode 436691733 series 1399341
Contenuto fornito da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

Rashid Shams, University of Southern California

Site response in sedimentary basins is partially governed by mechanisms associated with three-dimensional features. This includes the generation of propagating surface waves due to trapped and refracted seismic waves, focusing of seismic energy due to basin shape and size, and resonance of the entire basin sediment structure. These mechanisms are referred to as basin effects and they lead to a significant increase in the amplitude and duration of the observed ground motions from earthquake events. Currently, ground motion models (GMMs) incorporate basin effects using the time-averaged shear-wave velocity in the upper 30 m (V_S30), and the isosurface depths (depth to a particular shear wave velocity horizon, z_x). This approach captures site response features associated with the basin but uses parameters that are one-dimensional in nature and therefore are limited in their description of the lateral and other three-dimensional (3D) contributing effects. This work explores geometric features as predictive parameters in the development of region-specific models to improve the characterization of site response in sedimentary basins. In this work we constrained basin shape using depth to sedimentary basement (depth to a particular shear wave velocity horizon i.e., z_1.5 and z_2.3) and depth to crystalline basement (z_c,b) which are derived and validated using systematic exploration of geological cross sections and Community Velocity Model (CVM) profiles over Los Angeles Basin (LAB). Finally geometric parameters such as includes Standard deviation of zcb, Standard deviation of Absolute difference between z_1.5 and z_cb, distance from basin margin, and Spatial Area of Influence based on V_S30 are computed based on finalized shape. Residual analysis is employed to access derived geometric parameters for their ability to reduce bias and uncertainty in basin site response analysis.

  continue reading

20 episodi

Alle afleveringen

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida