Artwork

Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

How to Scrape Data Off Wikipedia: Three Ways (No Code and Code)

4:11
 
Condividi
 

Manage episode 431877236 series 3474159
Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-scrape-data-off-wikipedia-three-ways-no-code-and-code.
Get your hands on excellent manually annotated datasets with Google Sheets or Python
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #python, #google-sheets, #data-analysis, #pandas, #data-scraping, #web-scraping, #wikipedia-data, #scraping-wikipedia-data, and more.
This story was written by: @horosin. Learn more about this writer by checking @horosin's about page, and for more stories, please visit hackernoon.com.
For a side project, I turned to Wikipedia tables as a data source. Despite their inconsistencies, they proved quite useful. I explored three methods for extracting this data: - Google Sheets: Easily scrape tables using the =importHTML function. - Pandas and Python: Use pd.read_html to load tables into dataframes. - Beautiful Soup and Python: Handle more complex scraping, such as extracting data from both tables and their preceding headings. These methods simplify data extraction, though some cleanup is needed due to inconsistencies in the tables. Overall, leveraging Wikipedia as a free and accessible resource made data collection surprisingly easy. With a little effort to clean and organize the data, it's possible to gain valuable insights for any project.

  continue reading

476 episodi

Artwork
iconCondividi
 
Manage episode 431877236 series 3474159
Contenuto fornito da HackerNoon. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da HackerNoon o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-scrape-data-off-wikipedia-three-ways-no-code-and-code.
Get your hands on excellent manually annotated datasets with Google Sheets or Python
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #python, #google-sheets, #data-analysis, #pandas, #data-scraping, #web-scraping, #wikipedia-data, #scraping-wikipedia-data, and more.
This story was written by: @horosin. Learn more about this writer by checking @horosin's about page, and for more stories, please visit hackernoon.com.
For a side project, I turned to Wikipedia tables as a data source. Despite their inconsistencies, they proved quite useful. I explored three methods for extracting this data: - Google Sheets: Easily scrape tables using the =importHTML function. - Pandas and Python: Use pd.read_html to load tables into dataframes. - Beautiful Soup and Python: Handle more complex scraping, such as extracting data from both tables and their preceding headings. These methods simplify data extraction, though some cleanup is needed due to inconsistencies in the tables. Overall, leveraging Wikipedia as a free and accessible resource made data collection surprisingly easy. With a little effort to clean and organize the data, it's possible to gain valuable insights for any project.

  continue reading

476 episodi

All episodes

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci