Artwork

Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

Exploring ONNX, Embedding Models, and Retrieval Augmented Generation (RAG) with Langchain4j

1:09:00
 
Condividi
 

Manage episode 421443440 series 2469611
Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

339 episodi

Artwork
iconCondividi
 
Manage episode 421443440 series 2469611
Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

339 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci