Artwork

Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

High-Performance Java, Or How JVector Happened

1:01:16
 
Condividi
 

Manage episode 418915279 series 2469611
Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
An airhacks.fm conversation with Jonathan Ellis (@spyced) about:
Jonathan's first computer experiences with IBM PC 8086 and Thinkpad laptop with Red Hat Linux, becoming a key contributor to Apache Cassandra and founding datastax, starting DataStax to provide commercial support for Cassandra, early experiences with Java, C++, and python, discussion about the evolution of Java and its ecosystem, the importance of vector databases for semantic search and retrieval augmented generation, the development of JVector for high-performance vector search in Java, the potential of integrating JVector with LangChain for Java / langchain4j and quarkus for serverless deployment, the advantages of Java's productivity and performance for building concurrent data structures, the shift from locally installed software to cloud-based services, the challenges of being a manager and the benefits of taking a sabbatical to focus on creative pursuits, the importance of separating storage and compute in cloud databases, Cassandra's write-optimized architecture and improvements in read performance, DataStax's investment in Apache Pulsar for stream processing, the llama2java project for high-performance language models in Java

Jonathan Ellis on twitter: @spyced

  continue reading

342 episodi

Artwork
iconCondividi
 
Manage episode 418915279 series 2469611
Contenuto fornito da Adam Bien. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da Adam Bien o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
An airhacks.fm conversation with Jonathan Ellis (@spyced) about:
Jonathan's first computer experiences with IBM PC 8086 and Thinkpad laptop with Red Hat Linux, becoming a key contributor to Apache Cassandra and founding datastax, starting DataStax to provide commercial support for Cassandra, early experiences with Java, C++, and python, discussion about the evolution of Java and its ecosystem, the importance of vector databases for semantic search and retrieval augmented generation, the development of JVector for high-performance vector search in Java, the potential of integrating JVector with LangChain for Java / langchain4j and quarkus for serverless deployment, the advantages of Java's productivity and performance for building concurrent data structures, the shift from locally installed software to cloud-based services, the challenges of being a manager and the benefits of taking a sabbatical to focus on creative pursuits, the importance of separating storage and compute in cloud databases, Cassandra's write-optimized architecture and improvements in read performance, DataStax's investment in Apache Pulsar for stream processing, the llama2java project for high-performance language models in Java

Jonathan Ellis on twitter: @spyced

  continue reading

342 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci