Artwork

Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.
Player FM - App Podcast
Vai offline con l'app Player FM !

How Apache Iceberg and Flink Can Ease Developer Pain

47:08
 
Condividi
 

Manage episode 439522488 series 2574278
Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episodi

Artwork
iconCondividi
 
Manage episode 439522488 series 2574278
Contenuto fornito da The New Stack Podcast and The New Stack. Tutti i contenuti dei podcast, inclusi episodi, grafica e descrizioni dei podcast, vengono caricati e forniti direttamente da The New Stack Podcast and The New Stack o dal partner della piattaforma podcast. Se ritieni che qualcuno stia utilizzando la tua opera protetta da copyright senza la tua autorizzazione, puoi seguire la procedura descritta qui https://it.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episodi

Tutti gli episodi

×
 
Loading …

Benvenuto su Player FM!

Player FM ricerca sul web podcast di alta qualità che tu possa goderti adesso. È la migliore app di podcast e funziona su Android, iPhone e web. Registrati per sincronizzare le iscrizioni su tutti i tuoi dispositivi.

 

Guida rapida

Ascolta questo spettacolo mentre esplori
Riproduci